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Gain Switching Observer for Systems

with Time-varying Transmission Delay
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Control systems in which signals are transmitted over a network have been attracting great attention re-

cently. In such systems, transmission delay varies irregularly due to congestion of the network. This results in

control performance degradation. In order to solve this problem, this paper proposes an observer design method

for the systems with time-varying transmission delay. Using a time-stamp of each received packet, the method

switches observer gains to estimate the present state of the plant. Then, the observer design is reduced to sta-

bilization of a switched estimation error system. Linear matrix inequalities (LMIs) make it possible to design

the observer multiple gains so that the stability of the error system is guaranteed even if the gains are switched

randomly. Furthermore, the performance of the gain switching observer is improved by specifying decay rate of a

Lyapunov function for the error system. Finally, numerical and experimental examples illustrate the effectiveness

of the proposed method.
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1. Introduction

Studies on networked control systems have been at-

tracting great attention recently, 1)∼3) where a commu-

nication network is used to exchange signals for control

among control system components (sensors, controllers,

actuators, etc.) By using network, we have various ad-

vantages such as lower cost to install an instrument in a

factory and easier maintenance of the instrument. Fur-

thermore, using infrastructure such as the Internet, fast

communication is achieved easily. However, when packets

are sent over the public network, the transmission delay

varies irregularly depending on congestion of the network.

The variation of delay is called jitter, which causes control

performance degradation. 4)

For systems with delay, a state prediction method such

as the Smith predictor 5) is discussed in the literature.

When the full state can not be measured, an observer is

used to estimate the state from observation signals trans-

mitted over a network. One study 6) proposes a robust

H∞ observer that can estimate the state of discrete-time

systems with delay. In the network architecture field,

buffer memory 7) is used to reduce the variation of de-

lay. In the memory, received signals are saved within a
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certain period and sorted in the order of transmission.

This procedure makes the delay length constant.

However, methods in 6) cannot be applied to the state

estimation for systems with time-varying transmission de-

lay. The variation of delay is a phenomenon peculiar to

networked control systems. By using the buffer memory,

signals are stored for a period of maximum delay length.

However, the method is unsuitable for feedback control,

where real time process is essential.

In the research field of network communication, it is

known that the delay length is measurable via time-

stamp 8); information as to when the data were sent. The

scenario is the following: First, the sender includes the

time-stamp to every packet 9) (see Fig. 1). The receiver

calculates the difference between the time-stamp and the

signal’s arrival time. Then, delay length is obtained. This

means that delay length is known at the instance of re-

ceiving signals. In this paper, we design a gain switching

observer using the time-stamp information under random

delay. According to the transmission delay of observa-

tion signals, the observer switches gain and estimates the

current state of the plant. The design of the observer is

reduced to the stabilization problem for estimation error

systems with arbitrary switching.

This paper is organized as follows: In Section 2, we

formulate the estimation problem. In Section 3, we de-

scribe our design method for the observer and prove that

estimation error converges to zero. Section 4 shows the

design method to specify the decay rate of the Lyapunov
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function. Sections 5 and 6 illustrate numerical examples

and experimental results. Finally, this paper concludes in

Section 7.

2. Problem Formulation

2. 1 Problem statement

Consider a linear time-invariant discrete-time plant

x(t + 1) = Āx(t) + B̄u(t), (1a)

y(t) = C̄x(t), t = 0, 1, 2, · · · , (1b)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp denote state, input,

and output vectors respectively. We assume that (C̄, Ā)

is observable. Our problem is observer-based estimation

for (1). Observation signal y(t) at time t is transmitted

to the observer. Here, we assume the following conditions

for transmission delay h(t) at time t.

(A1) h(0) = 0 for simplicity.

(A2) h(t) varies randomly, but is known at the instant

of receiving data via time-stamp information.

(A3) h ∈ Z+
hd
≡ {0, 1, 2, · · · , hd}, where Z+

hd
is the

set of nonnegative integers not larger than hd and hd is

constant maximal time delay.

Note. Since we use the time-stamp, the delay h(t) is

known at the instance of receiving a packet. Note that

the delay length is not known a priori.

Note. To measure h(t), we assume the use of a par-

ticular protocol in this paper.

Note. (A3) implicitly indicates that no packet loss

is allowed in this network.

Under these assumptions, delay h(t) varies randomly.

Here, we denote transmission delay of observed signal y(t)

by d(t). Note that d(t) is different from h(t), because the

packet observed at t was sent at t− d(t) while the packet

sent at t will be observed at t + h(t).

Fig. 2 and Table 1 show signal arrival sequence and

variation of delay, respectively. * means a case not re-

ceiving signals and hence d is indefinite. For example,

h(3) = 1 at time t = 3. Then, the observer receives sig-

nal y(1) with 2 steps delay. Therefore, d(3) = 2. When

y(2) and y(4) are received at time t = 5, then d(5) = 1

y y y y y y y y(0) (4)(3)(2)(1) (7)(6)(5)

y(0) y yy
y

y

(4)
(3) (2)(1) (5)

Observer

Plant

Observation signal
Time

Fig. 2 Variation of transmission delay

Table 1 Time delay h(t) and d(t)

Sample time t 0 1 2 3 4 5

y(t) received at y(0) * * y(1) y(3) y(2), y(4)

the observer

Delay h(t) 0 2 3 1 1 2

Delay d(t) 0 * * 2 1 1, 3

and 3. In this paper, we consider delay d(t), rather than

h(t). The next section shows the rule of selecting signals

for estimation in cases without receiving signals and with

receiving multiple signals simultaneously.

Note. From the definition of d(t), assumptions (A1)-

(A3) hold for delay d(t), similarly as for h(t).

2. 2 Augmented system

In this section, we formulate the system with the trans-

mission delay. Consider an augmented system with hd

delay operators, z−1, serially connected to the plant (1)

as illustrated in Fig. 3. Output y#
d (t) ∈ Rp, d ∈ Z+

hd
\0

from the delay z−1 means observation signal y(t− d). In

the case of delay d, the observer detects y#
d (t). Z+

hd
\0 is

the set excluding element zero. Here, we define the state

x̃ ∈ Rn×phd of the augmented system as

x̃ =
h

x′ y#
1

′ · · · y#
hd

′ i′
,

where ′ denotes transposition. Then, the augmented sys-

tem is described by

x̃(t + 1) = Ax̃(t) + Bu(t), (2a)

ỹ(t) = Cd(t)x̃(t), d(t) ∈ Z+
hd
\0, t = 0, 1, 2, · · · ,

(2b)

A =

2
6666666666664

Ā 000n×p . . . . . . . . . 000n×p

C̄ 000p×p . . . . . . . . . 000p×p

000p×n Ip

. . .
...

... 000p×p

. . .
. . .

...
...

...
. . .

. . .
. . .

...

000p×n 000p×p . . . 000p×p Ip 000p×p

3
7777777777775

,

B =
h

B̄′ 000′p×m · · · 000′p×m

i′
,
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Fig. 3 System with transmission delay

Cd =

8
><
>:

h
C̄ 000p×phd

i
if d = 0

h
000p×(n+pd−p) Ip 000p×(phd−pd)

i
if d ∈ Z+

hd
\0,

with identity matrix Ip ∈ Rp×p and zero matrix 000k×q ∈
Rk×q respectively. Note that Cd in (2b) is time-varying

according to transmission delay d of signal ỹ(t) = y#
d =

y(t−d) received at time t. In the next section, we consider

the design of an observer for (2). Since the augmented sys-

tem (2b) includes state x of plant (1), the state estimation

for (2b) induces that for (1).

3. Gain Switching Observer

3. 1 Structure of switching observer

Our gain switching observer consists of the augmented

systems and multiple observer gains Fd, d ∈ Z+
hd

as shown

in Fig. 4. This observer selects Fd among those gains if it

recognizes the transmission delay d of the received signal

y#
d . We define estimate as

ˆ̃x =
h

x̂′ ŷ#′
1 · · · ŷ#′

hd

i′
,

where ˆ̃x ∈ Rn+phd , x̂ ∈ Rn, and ŷ#
d ∈ Rp are the esti-

mations of x̃, x, and y#
d respectively. Our gain switching

observer for system (2) is given by

ˆ̃x(t + 1) = Aˆ̃x(t) + Bu(t) + Fd(t)(ỹ(t)− Cd(t)
ˆ̃x(t)),

(3)

d(t) ∈ Z+
hd

, t = 0, 1, 2, · · · .

3. 2 Rule of selecting signals for state estima-

tion

In this section, we explain our state estimation method.

Under the assumption (A1),

(B1) Output signal y(0) arrives at the observer at in-

stance t = 0.

From (A2)-(A3), the following events (B2)-(B4) occur.

(B2) The observer does not receive any signals for pe-

riod Tα (0 < Tα < hd) (see Fig. 5(a)).

(B3) The observer receives one or multiple signals at

the same sampling time 0 < t = tβ (see Fig. 5(b)).

(B4) A signal y(t1) arrives at the observer later than

another signal y(t2), t1 < t2 (see Fig. 5(c)).

In all of the cases (B1)-(B4), our estimation method is

as follows.

(C) At sampling time t = tγ , the observer employs the
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Fig. 4 Augmented system and gain switching observer

newest signal among the received signals for 0 ≤ t ≤ tγ .

Note. If the observer receives signal y(t2) earlier

than y(t1), t1 < t2 (see Fig. 5(c)), then the observer does

not use y(t1) for estimation.

When no or multiple signals arrive at step t, then, from

Fig. 2 and Table 1, delay d(t) is indefinite or multiple

values, respectively. However, from the rule (C), de-

lay d is unique. For example, the observer does not re-

ceive signals at time t = 0, but uses the newest signal

y(0), d(0) = 0 (see Fig. 6). At time t = 1, the delay

of signal y(0) changes from zero to one step. Then, the

observer switches to gain F1. In case of simultaneous ar-

rival of y(1) and y(2), the newest signal is y(2) with delay

d(3) = 1.

3. 3 Design of the gain switching observer

Since this observer (3) switches gain according to trans-

mission delay of observation signals, the estimation error

system is also switched. To guarantee the stability of the

error system for arbitrary switching, we design the gain

Fd. We define estimation error ẽ ∈ Rn+phd as

ẽ = x̃− ˆ̃x. (4)

From (2)-(4), we obtain

ẽ(t + 1) = (A− Fd(t)Cd(t))ẽ(t), (5)

d(t) ∈ Z+
hd

, t = 0, 1, 2, · · · .

Note that Fd(t) and Cd(t) in (5) are time-varying. We

design the observer using common Lyapunov solution so

that system (5) is stable for arbitrary switching. Now

consider hd + 1 Lyapunov inequalities for a single P

(A−FdCd)′P (A−FdCd)−P < 0, P > 0, d ∈ Z+
hd

. (6)

From (6) and the Schur complement, we obtain the matrix

inequalities
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"
−P P (A− FdCd)

(A− FdCd)′P −P

#
< 0, d ∈ Z+

hd
.

Let Xd = PFd, d ∈ Z+
hd

. Then, these matrix inequalities

are expressed as hd + 1 LMIs

"
−P PA−XdCd

A′P − C′dX ′
d −P

#
< 0, d ∈ Z+

hd
. (7)

If there exist P > 0 and Xd, d ∈ Z+
hd

, we design gain

Fd, d ∈ Z+
hd

as follows.

Fd = P−1Xd, d ∈ Z+
hd

. (8)

Now, let us check the stability of error system (5) with

gain Fd, d ∈ Z+
hd

designed by the above method. From

assumptions (A1)-(A3), event (B1) occurs at t = 0 and

(B2), (B3), or (B4) happens for any t > 0. Therefore,

we have the following lemma.

Lemma 1. Assume that there exists P > 0 satisfy-

ing LMI (7) and that the events (B1)-(B4) occur. Then,

the positive definite function V (t) = ẽ′(t)P ẽ(t) satisfies

∆V (t) ≡ V (t + 1)− V (t) < 0, t = 0, 1, 2, · · · .

Proof. The proof of this lemma is given in the Ap-

pendix.

From Lemma 1, we obtain the following result.

Theorem 1. Assume that there exist P > 0 and

Xd, d ∈ Z+
hd

such that LMIs (7) hold for the augmented

system (2). If the observer (3) is designed by taking

y y y y(0) (3)(2)(1)

y(0) y(0) y(0) y(2)

y(0) y

y(2)

(1)
Observer

Plant

Gain
F FFF
0 1 2 1

Time

Signals employed
estimationfor

Fig. 6 Switched gains

Fd = P−1Xd, d ∈ Z+
hd

, then the origin ẽ = 0 is asymp-

totically stable.

Proof. We consider a candidate of Lyapunov func-

tion V (t) = ẽ′(t)P ẽ(t). Under assumptions (A1)-(A3),

we always have one of the events (B1)-(B4). From

Lemma 1, in the cases of those events, ∆V < 0 holds.

From Lyapunov’s stability theorem, the origin ẽ = 0 is

asymptotically stable.

From Theorem 1, we can ensure estimation error ẽ con-

verges to zero by the proposed observer. Therefore, sys-

tem (2) is estimated successfully.

4. Performance Improvement of Switching
Observer

To improve performance of our observer, we design gain

Fd so that the estimation error (Lyapunov function) is

decreased in a specified rate. Let us denote candidate of

Lyapunov function V (t) by ẽ′(t)P ẽ(t), P > 0. We design

gain Fd, d ∈ Z+
hd

satisfying the following inequality

V (t + 1) < r2V (t), 0 < r ≤ 1, (9)

where r is decay rate of V (t). From the definition of V (t),

(9) is described as

(A− FdCd)′r−1P (A− FdCd)− rP < 0, P > 0, (10)

d ∈ Z+
hd

, 0 < r ≤ 1.

From the Schur complement, (10) is equivalent to

"
−rP P (A− FdCd)

(A− FdCd)′P −rP

#
< 0, (11)

d ∈ Z+
hd

, 0 < r ≤ 1.

Now let Yd = PFd, d ∈ Z+
hd

. Then, (11) is reduced to

LMIs for P and Yd

"
−rP PA− YdCd

A′P − C′dY ′
d −rP

#
< 0, (12)

d ∈ Z+
hd

, 0 < r ≤ 1.

If there exist P > 0 and Yd satisfying (12), gain Fd, d ∈
Z+

hd
is calculated as follows:
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Fd = P−1Yd, d ∈ Z+
hd

. (13)

Thus, the next theorem holds.

Theorem 2. If there exist P > 0 and Yd, d ∈ Z+
hd

such that LMIs (12) hold, then the origin ẽ = 0 is asymp-

totically stable and (9) holds by the switching law (13).

Proof. As stated above, if there exist P > 0 and

Yd, d ∈ Z+
hd

such that LMIs (12) hold for the augmented

system (2), then (9) holds. From 0 < r ≤ 1 and P > 0,

we obtain

V (t + 1) < r2V (t) ≤ V (t). (14)

From (14), V (t + 1) − V (t) < 0, that is, Lyapunov in-

equality (6) holds. This means that there exist P > 0

and Xd, d ∈ Z+
hd

such that LMIs (7) hold. Thus, from

Theorem 1, the origin ẽ = 0 is asymptotically stable.

5. Numerical Simulation

In order to verify the effectiveness of the proposed

method, the authors have performed a numerical simula-

tion. Consider a continuous-time model of the DC motor

adopted in 10). The state equation of the DC motor is

given by

ẋc(tc) =

"
0 1

0 −9.8

#
xc(tc) +

"
0

49

#
uc(tc), (15a)

yc(tc) =
h

1 0
i
xc, xc =

h
θ θ̇

i′
, (15b)

where θ, θ̇, and u are functions of time tc [sec] and mean a

DC motor’s angle, angular velocity, and input voltage to

the motor, respectively. In this numerical example, we es-

timate the state x = [θ, θ̇]′ based on output signal y = θ.

Let θ̂ and
ˆ̇
θ be estimations of θ and θ̇. System (15) is

discretized into a ZHO equivalent one with the sampling

period 10 [ms]. Input is chosen as uc = 3 cos(1000tc).

Initial state x̃(0) of (2) is zero vector. Estimate ˆ̃x(0) is

chosen as

ˆ̃x(0) =
h

θ̂(0)
ˆ̇
θ(0) ŷ#′

1 (0) · · · ŷ#′
hd

(0)
i′

=
h

0.1 1.0 0 · · · 0
i′

.

Fig. 7 shows a sample sequence of the time delay from

uniform distribution with maximum 90 [ms] (hd = 9).

First, we have designed the switching observer with r = 1

stated in Section III. The time response of state and esti-

mate is given in Fig. 8. In these figures, solid and dashed

lines respectively mean the real state θ, θ̇ and estimated

state θ̂,
ˆ̇
θ. In both figures, it turns out that the estima-

tion converges to the true state as time passes. We can see
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Fig. 10 Comparison of estimation errors (r = 1.0, 0.85)

that the state is successfully estimated by the proposed

observer.

Fig. 9 shows the state and estimate via switching ob-

server with decay rate r = 0.85 < 1. In the figure, solid

and dashed lines represent the state and estimate for the

plant. From Fig. 9, the estimate tracks the state. Thus,

in the case of r = 0.85, the switching observer can es-

timate the state. We denote the estimation error of θ

and θ̇ by ẽ1 = θ − θ̂ and ẽ2 = θ̇ − ˆ̇
θ. Fig. 10 shows the

estimation error in the case of r = 1.0 and 0.85. Solid

and dashed lines are the error in r = 1 and r = 0.85,

respectively. From this figure, we can see that the esti-

mation error in r = 0.85 converges to zero faster than

the case of r = 1.0. Therefore, by setting the decay rate

corresponding to specifying domain of pole assignment of

the switching observer, the estimation performance is im-
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proved. These results show that, for the systems with

a time-varying delay system, the proposed observer can

estimate the state successfully.

6. Experiment

To verify the performance of the observer, an experi-

ment of estimation for the inverted pendulum was con-

ducted. Transmission delay was generated via emulator

and observation signals were recorded from the plant sta-

bilized by the controller. After the recording of signals,

the observer estimated the state offline. Fig. 11 shows the

delay generated by network emulator NIST Net 11). The

continuous-time state equation of the inverted pendulum

is given by

ẋc(tc) = Acxc(tc) + Bcuc(tc),

yc(tc) = Ccxc(tc),

Ac =

2
666664

0 0 1

0 0 0

0 −m2l2g
F

− (J+ml2)(cca2R+K2
mK2

g)

Fa2R

0 (M+m)mlg
F

ml(cca2R+K2
mK2

g)

Fa2R

0

1
mlcp

F

− (M+m)cp

F

3
77775

, Bc =

2
666664

0

0
(J+ml2)KmKg

FaR

−mlKmKg

FaR

3
777775

,

Cc =

"
1 0 0 0

0 1 0 0

#
, F = (M + m)J + Mml2,

xc = [z, θ, ż, θ̇]′,

where z, θ, ż, θ̇, and u are position of the cart, angle

of the pendulum, velocity of the cart, angular velocity of

the pendulum, and input voltage, respectively. Table 2

shows the value of the parameters of the pendulum. In

this experiment, the observer estimates the state x via ob-

servation signal y = [z, θ]′. The pendulum is discretized

into a ZOH equivalent system with sampling period 10

[ms]. The maximum of delay is 110 [ms] (hd = 11). The

decay rate is chosen as r = 1.

Fig. 12 shows the time response of the estimate and

state of the pendulum. Solid and dashed lines represent

the estimate and state. Though we could not measure

the velocity and angular velocity in the experiment, dif-

ference approximation is represented in Fig. 12(c)-(d). In

Fig. 12(a)-(b), the position z and angle θ are successfully

estimated. Since there exists modeling error for the plant,
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Fig. 11 Variation of transmission delay in experiment

Table 2 Parameters of an inverted pendulum

Km torque constant 0.00767 V/rad sec−1

R armature resistance 2.6 Ω

Kg gear ratio 3.7

a radius of pinion 0.00635 m

M mass of cart 0.895 kg

2l length of pendulum 0.628 m

m mass of pendulum 0.215 kg

g gravity acceleration 9.8 m/sec2

J inertia moment of pendulum 0.0076 N m sec2

cp viscous friction of rotation 8.4779 N m sec

axis for pendulum

cc viscous friction of cart 0.001384 N sec/m

0 2000 4000 6000 8000 10000
-0.1

-0.095

-0.09

-0.085

-0.08

-0.075

-0.07

-0.065

-0.06

-0.055

-0.05 

Time [ms]

P
os

it
io

n
 [
m

]

Estimation Value

State Value

(a) Position z(t)

0 2000 4000 6000 8000 10000
-20

-15

-10

-5

0

5 x 10
-3

Estimation Value

State Value

A
n
gl

e 
[r
ad

]

Time [ms]

(b) Angle θ(t)

0 2000 4000 6000 8000 10000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Estimation Value

State Value
(Approximation)

Time [ms]

V
el

oc
it
y 

[m
/
se

c]

(c) Velocity ż(t)
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Fig. 12 State estimation of an inverted pendulum

it can be verified that our observer is robust against model

error from the result. In Fig. 12(c)-(d), there remains an

error between the approximation and estimate. This is

considered to be calculation error of the approximation.

Thus, state estimation of z and θ via the switching ob-

server is accomplished under random delay.

7. Conclusion

In this paper, we have proposed a gain switching ob-

server for systems with time varying delay. By means

of solving linear matrix inequalities, the observer is de-

signed so that the origin of the error system is asymptoti-

cally stable. Furthermore, we have also proposed a design
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method in order that the performance of the estimation

is improved in terms of the decay rate of the Lyapunov

function. Numerical examples and an experiment have

shown the effectiveness of the switching observer. Future

works will involve design of the switching observer-based

controller and performance evaluation of the controller.
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Appendix A. Proof of lemma 1

A. 1 the case of (B1)

When (B1) occurs, the observer switches to gain

Fd(0) = F0 from d(0) = 0 (Fig.A. 1). Then, from (3)

and (4), we obtain the following equation.

∆V (0) = (Ax̃(0)−Aˆ̃x(0)− F0(C0x̃(0)− C0
ˆ̃x(0)))′P

(Ax̃(0)−Aˆ̃x(0)− F0(C0x̃(0)− C0
ˆ̃x(0)))

− (x̃(0)− ˆ̃x(0))′P (x̃(0)− ˆ̃x(0))

= ẽ(0)′((A− F0C0)
′P (A− F0C0)− P )ẽ(0).

Since P > 0 and F0 satisfy LMIs (7), the next inequality

holds.

(A− F0C0)
′P (A− F0C0)− P < 0.

Therefore, for any ẽ(0), we obtain

y(0)

y(0)

y(0)

Plant

Observer

Signals

(Order of arrival)

used
for estimation

Selected gain
F0

Time

Observation signal

Fig.A.1 Time delay d(0) = 0 at t = 0

Plant
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(Order of arrival)
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Selected gain

y(t -i)

y(t -i)

y(t -i) y(t -i) y(t -i)y(t -i)

t -jt -i t -j+1 t -1 t

F
i-j F

i-j+1 F
i-1 F

i

Time

Fig.A.2 Not receiving signals at some time

∆V (0) < 0.

A. 2 the case of (B2)

We consider event (B2). Assume that, at t− j +1, t−
j + 2, · · · , t, the observer does not receive signals and

y(t− i) is the latest signal (see Fig.A. 2). At t− j, signal

y(t− i) arrives at the observer. Then, from (C), y(t− i)

is used for estimation at t − j, t − j + 1, · · · , t. Time

delay of y(t− i) at t− j is

d(t− j) = i− j, d ∈ Z+
hd

. (A. 1)

Since signal y(t− i) arrives at the observer before time t,

the next inequality

1 ≤ j,

holds. From the definition of i, j and assumption (A2),

we obtain

j ≤ i ≤ hd.

Thus, the following inequality

1 ≤ j ≤ i ≤ hd,

is satisfied.

An interval between time t − i and t is i steps. Thus,

transmission delay of signal y(t− i) at t is d(t) = i. Then,

from (C), the observer is expressed as

ˆ̃x(t + 1) = Aˆ̃x(t) + Bu(t) + Fi(y(t− i)− Ci
ˆ̃x(t))
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= Aˆ̃x(t) + Bu(t) + Fi(ỹ(t− j)− Ci
ˆ̃x(t)),

(A. 2)

1 ≤ j ≤ i ≤ hd, t = 1, 2, · · · .

Note that, from the augmented system (2), y(t − i) =

ỹ(t − j) holds. Using (A. 2), we have the following equa-

tion:

ẽ(t + 1) = Ax̃(t) + Bu(t)− (Aˆ̃x(t) + Bu(t)

+ Fi(ỹ(t− j)− Ci
ˆ̃x(t))). (A. 3)

From the definition of system (2),

ỹ(t− j) = Ci−j x̃(t− j), (A. 4)

is satisfied. Then, from (A. 3) and (A. 4), we obtain

ẽ(t + 1) = Ax̃(t)−Aˆ̃x(t)− Fi(Ci−j x̃(t− j)− Ci
ˆ̃x(t)).

(A. 5)

From the definition of A, B, and Cd, the following equa-

tions hold.

Ck−1 = CkA, (A. 6)

CkB = 0, (A. 7)

k ∈ Z+
hd
\0.

Here, using the equation (A. 6), we have

Ci−j = CiA
j . (A. 8)

In addition, from (A. 7) and (A. 8), we obtain the follow-

ing equation.

Ci

jX

l=1

Al−1Bu(t− l) =

jX

l=1

Ci+1−lBu(t− l) = 0.

(A. 9)

From (A. 2), (A. 8) and (A. 9), we have

ẽ(t + 1) = Ax̃(t)−Aˆ̃x(t)− Fi(CiA
j x̃(t− j)

+ Ci

jX

l=1

Al−1Bu(t− l)− Ci
ˆ̃x(t))

= Ax̃(t)−Aˆ̃x(t)− FiCi(A
j−1(Ax̃(t− j)

+ Bu(t− j)) +

j−1X

l=1

Al−1Bu(t− l)− ˆ̃x(t))

= Ax̃(t)−Aˆ̃x(t)− FiCi(A
j−1x̃(t− j + 1)

+

j−1X

l=1

Al−1Bu(t− l)− ˆ̃x(t)).

Iterating the above procedure, we obtain a following equa-

tion.

ẽ(t + 1) = (Ax̃(t)−Aˆ̃x(t)− FiCi(x̃(t)− ˆ̃x(t))

= (A− FiCi)ẽ(t).
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in signals received at t.

Thus,

V (t + 1) = ẽ′(t)(A− FiCi)
′P (A− FiCi)ẽ(t),

is satisfied. For ∆V (t), we obtain

∆V (t) = ẽ′(t)((A− FiCi)
′P (A− FiCi)− P )ẽ(t).

From the assumption, there exists P > 0 satisfying

(A− FiCi)
′P (A− FiCi)− P < 0.

Therefore,

∆V (t) < 0

holds.

A. 3 the case of (B3)

(B3) is divided into two cases.

(B3.1) The observer receives one or multiple signals

at time t > 0. Furthermore, these signals include the

newest signal (Fig.A. 3).

(B3.2) The observer receives one or multiple signals at

time t > 0. Furthermore, the newest signal arrives at

the observer before t (Fig.A. 4).

First, we consider the case of (B3.1). Suppose that the

observer receives α signals at t > 0. Time delays of these

signals are denoted by h1, h2, · · · , hα−1 and hα, where
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1 ≤ α ≤ hd + 1, (A. 10)

0 ≤ hα < hα−1 < · · · < h1 ≤ hd, (A. 11)

hold. Note that, in α = 1, the observer receives one signal

at t. Assume that y(t− i) is the newest signal at t−1. At

t−j, t−j+1, · · · , t−1, the signal y(t−i) is employed for

estimation from the rule (C). Then, time delay of y(t− i)

at t− j is

d(t− j) = i− j. (A. 12)

The following equation is satisfied in the same way as the

case of (B2),

1 ≤ j ≤ i ≤ hd + 1. (A. 13)

Since an interval between time t−i and t−1 is i−1 steps,

time delay of y(t−i) at time t−1 is d(t−1) = i−1. Then,

the observer selects gain Fi−1. From (A. 11), at time t,

signal y(thα) = ỹ(t) = Chα x̃(t) is received. Thus, the

gain is switched to Fhα from the rule (C). The observer

is given by

ˆ̃x(t + 1) = Aˆ̃x(t) + Bu(t) + Fhα(y(thα)− Chα
ˆ̃x(t))

= Aˆ̃x(t) + Bu(t) + FhαChα(x̃(t)− ˆ̃x(t)),

(A. 14)

t = 1, 2, · · · .

At time t− 1, the observer employs y(t− i) = ỹ(t− j) =

Ci−j x̃(t− j). Then, the estimate ˆ̃x is given by

ˆ̃x(t) = Aˆ̃x(t− 1) + Bu(t− 1) + Fi−1(y(t− i)

− Ci−1
ˆ̃x(t− 1))

= Aˆ̃x(t− 1) + Bu(t− 1) + Fi−1(Ci−j x̃(t− j)

− Ci−1
ˆ̃x(t− 1)). (A. 15)

From (A. 14) and (A. 15), we obtain

ẽ(t + 1) = x̃(t + 1)− ˆ̃x(t + 1)

= Ax̃(t)−Aˆ̃x(t)− Fhα(y(thα)− Chα
ˆ̃x(t))

= A2x̃(t− 1)−A(Aˆ̃x(t− 1) + Fi−1(Ci−j x̃(t− j)

− Ci−1
ˆ̃x(t− 1)))− Fhα(Chα x̃(t)− Chα(Aˆ̃x(t− 1)

+ Bu(t− 1) + Fi−1(Ci−j x̃(t− j)

− Ci−1
ˆ̃x(t− 1))))

= A2x̃(t− 1)−A(Aˆ̃x(t− 1) + Fi−1(Ci−j x̃(t− j)

− Ci−1
ˆ̃x(t− 1)))− Fhα(ChαAx̃(t− 1)

− Chα(Aˆ̃x(t− 1) + Fi−1(Ci−j x̃(t− j)

− Ci−1
ˆ̃x(t− 1)))).

From (A. 8) and (A. 9), the following equation holds.

ẽ(t + 1) = A2x̃(t− 1)−A(Aˆ̃x(t− 1)

+ Fi−1(Ci−1A
j−1x̃(t− j)

+ Ci−1

jX

l=2

Al−2Bu(t− l)

− Ci−1
ˆ̃x(t− 1)))− Fhα(ChαAx̃(t− 1)

− Chα(Aˆ̃x(t− 1) + Fi−1(Ci−1A
j−1x̃(t− j)

+ Ci−1

jX

l=2

Al−2Bu(t− l)− Ci−1
ˆ̃x(t− 1))))

= A2x̃(t− 1)−A(Aˆ̃x(t− 1) + Fi−1Ci−1

(Aj−2x̃(t− j + 1) +

j−1X

l=2

Al−2Bu(t− l)

− ˆ̃x(t− 1)))− FhαChα(Ax̃(t− 1)− (Aˆ̃x(t− 1)

+ Fi−1Ci−1(A
j−2x̃(t− j + 1)

+

j−1X

l=2

Al−2Bu(t− l)− ˆ̃x(t− 1)))).

Iterating the above procedure, we obtain an equation

ẽ(t + 1) = (A− FhαChα)(A− FiCi)(x̃(t− 1)− ˆ̃x(t− 1))

= (A− FhαChα)(A− Fi−1Ci−1)ẽ(t− 1)

= (A− FhαChα)ẽ(t).

The following equation holds.

V (t + 1) = ẽ′(t)(A− FhαChα)′P (A− FhαChα)ẽ(t).

From the above equation, we have

∆V (t) = ẽ′(t)((A− FhαChα)′P (A− FhαChα)− P )ẽ(t).

From the assumption, there exist P > 0 and Xd, d ∈ Z+
hd

satisfying LMIs (7). Then, we obtain

(A− FhαChα)′P (A− FhαChα)− P < 0.

Thus,

∆V (t) < 0

holds.

In the case of (B3.2), suppose that the observer re-

ceives α signals at t > 0. Time delays of these signals

are denoted by h1, h2, · · · , hα−1 and hα. We assume that

these delays satisfy (A. 10) and (A. 11). At t > 0, the lat-

est signal is y(t− i) which is received at time t−j. In this

case, the observer uses y(t−i) at t−j, t−j+1, · · · , t from

the rule (C). At time t, delay of y(t− i) is d(t) = i. Then,

the observer selects Fi. The equation of the observer is

given by

ˆ̃x(t + 1) = Aˆ̃x(t) + Bu(t) + Fi(y(t− i)− Ci
ˆ̃x(t))

= Aˆ̃x(t) + Bu(t) + Fi(ỹ(t− j)− Ci
ˆ̃x(t))
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1 ≤ j ≤ i ≤ hd, t = 1, 2, · · · .

This case is the same as (B2). From the same procedure

as case (B2), we obtain ∆V (t) < 0.

A. 4 the case of (B4)

From the proof in case (B3), case (B3) includes case

(B4) (see Fig. A. 3 and Fig.A. 4). ∆V (t) < 0 holds in

case (B4).

Thus, in the cases of (B1)-(B4), ∆V (t) < 0 holds.
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