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Stru
tural health monitoring (SHM) involves 
ontinuous monitoring of a stru
ture's 
ondition with near real-time analysis of sensed data. The emerging wireless sensor network (WSN) te
hnology enables distributed dataa
quisition and pro
essing for stru
ture monitoring appli
ations, whi
h 
urrently adopt a 
entralized solution,using a network of intelligent sensors. SHM poses a 
hallenging problem for sensor networks with its dual re-quirements of high-frequen
y sensing and stru
ture-wide 
oordination. We design a robust, modular WSN-baseddistributed sensing system for high-frequen
y data a
quisition in stru
ture monitoring. Our 
ontributions aretwofold. The system emulates the fun
tionality of a 
entralized solution employing analog sensors, a
hieving
omparable performan
e. The resulting 
ompatibility with existing SHM algorithms will fa
ilitate the adoptionof sensor network te
hnology for stru
ture monitoring. Additionally, the data aggregation, distributed sensingand time syn
hronization servi
es 
omprising the system enable in situ data pro
essing and aggregation in WSNs.This fun
tionality will enable a seamless transition from 
entralized to fully distributed SHM appli
ations, withno 
hanges to the infrastru
ture.Key Words: sensor networks, stru
tural health monitoring, distributed sensing, data aggregation

1. Introdu
tionThe goal of stru
tural health monitoring (SHM) is to de-termine the 
ondition of the monitored stru
ture, su
h asa building, bridge or an airplane, and to identify potentialproblems at an early stage, by examining the outputs ofsensors atta
hed to the stru
ture. This pro
ess typi
allyinvolves measuring strain values or vibration 
hara
ter-isti
s at di�erent points in a building, or measuring theload on bridge supports. With few ex
eptions, existingSHM appli
ations have adopted a 
entralized approa
h,employing a small number of analog sensors wired to a
entral 
ontroller 3). In these systems, data a
quisitionand pro
essing 
apa
ity of the 
entral node and the wiring
omplexity pla
e limits on s
alability, usually supporting10-20 sensors at the most. Wiring sensors to a 
entralnode in a large stru
ture is expensive and 
umbersome(the wires may 
ost more than the sensors!); it may alsobe detrimental to system reliability as wires may be dam-aged or severed.y Presented at INSS2004 (2004.6)� Department of Computer S
ien
e, University of Illinois atUrbana-Champaign, Urbana, Illinois, USA�� Department of Civil and Environmental Engineering,University of Illinois at Urbana-Champaign, Urbana, Illi-nois, USA( Re
eived November 14, 2004)( Revised June 27, 2005 )

Re
ent advan
es in sensing and networking te
hnolo-gies have led to the emergen
e of wireless sensor networks(WSNs) as a new 
omputing platform. Composed of alarge number of small, intelligent sensor nodes, WSNshave started supplanting 
entralized sensing and 
ontrolsystems with a low-
ost distributed alternative 12). WSNsare attra
tive for stru
ture monitoring appli
ations for anumber of reasons. They o�er redu
ed 
ost, in
reasedrobustness through de
entralization, and a degree of re-silien
y to node and link failures. In parti
ular, a dis-tributed sensor network 
ould 
ontinue to fun
tion, atdiminished 
apa
ity, even after sustaining the loss of alarge fra
tion of the sensors. Moreover, wireless 
ommu-ni
ation means WSNs do not su�er from wire breaks in
atastrophi
 events su
h as earthquakes. An additionalbene�t of \smart" sensors is that some of the data pro
ess-ing may o

ur lo
ally at the sensors, redu
ing the 
ontrolturnaround time and improving overall system respon-siveness.We develop a high-frequen
y distributed sensing systemfor stru
ture monitoring appli
ations on a WSN platform
onsisting of Mi
a-2 motes 2). The nodes used in our ex-periments are equipped with a 433MHz RF trans
eiverfor low data rate wireless 
ommuni
ation. While severalalternative radios are available, in
luding Bluetooth and802.15.4 (ZigBee), low power and low bandwidth are aninherent 
hara
teristi
 
ommon to all wireless sensor plat-



110 T. SICE Vol.E-S-1 No.1 2006forms. The amount of available memory is also severelylimited: 4KB SRAM and 512KB serial 
ash. We de-sign the robust data a
quisition system for this resour
e-
onstrained environment, bringing data pro
essing and
ontrol into the network. The system is modular andhighly 
ustomizable; options are available for in situ �l-tering and data pro
essing, reliable or best-e�ort dataaggregation, and multiple, dynami
ally-sele
ted sensingmodalities.In this paper, we des
ribe our experien
e with the dis-tributed data a
quisition system for 
entralized data pro-
essing on a wireless sensor platform. The obje
tive ofbuilding su
h a system is to fa
ilitate the transition tofully distributed SHM appli
ations in the future, whilesupporting ongoing resear
h on stru
ture monitoring uti-lizing the existing 
entralized te
hniques. We des
ribe thedesign of the system, present empiri
al evaluation resultsand dis
uss the limitations of 
urrent WSN platforms inSHM and propose dire
tions for future resear
h.2. Stru
ture Monitoring with WirelessSensor NetworksIn traditional 
entralized data a
quisition systems, sen-sors 
ontinuously generate data that are periodi
ally sam-pled by a 
entral data pro
essing unit. SHM 
omputa-tions are performed after the desired amount of data is
olle
ted. We develop a WSN-based system that em-ulates the fun
tionality of 
entralized sensing systems,with added bene�ts of in
reased robustness, lower 
ostand seamless transition to distributed sensing, whi
h we
onsider the future of SHM.2. 1 Requirements and DesignBuildings and bridges employing SHM need to be mon-itored for extended durations, periodi
ally 
he
king thestate of the entire stru
ture. Unlike appli
ations like habi-tat monitoring, whi
h 
ontinuously sample the sensorsat a very low frequen
y, stru
ture monitoring algorithmsneed to dete
t vibrations with frequen
ies up to 100Hz.Thus the Nyquist limit for the sampling frequen
y is atleast 200Hz. With the 
urrent WSN te
hnology, it is notpossible to sample sensors 
ontinuously at this rate whileex�ltrating the data over the wireless network.In order to provide a

urate sensing and redu
e samplejitter, we must disable other sour
es of high-priority inter-rupts in the sensor node, e.g., the radio. For this reason,we �rst store sensor data in 
ash memory to be retrievedlater. Thus, the size of available 
ash memory limits themaximum duration of uninterrupted sensing. On Mi
a-2motes, this limitation translates into re
ording approxi-

mately 90 se
onds of 
ontinuous data sampled at 250Hz.Thus the data a
quisition pro
ess operates via intermit-tent periods of high-frequen
y sensing and 
ommuni
ationor idle time.Se
ondly, the system mush have a way to deliver sensordata to the pro
essing station reliably, sin
e SHM algo-rithms developed for wired systems require that no sensorreadings be lost in order to produ
e 
orre
t results. Wedesign su
h a transport proto
ol, although it is 
ostly toimplement over an unreliable multi-hop wireless network.We also provide alternative proto
ols for best-e�ort andprobabilisti
 data transport, e.g., guarantee delivery of atleast 99% of the pa
kets with high probability.Thirdly, overall system robustness is a 
riti
al require-ment for a monitoring system operating for a period ofseveral years. Individual sensor nodes are prone to fail-ures, and 
hanges in the environment may alter the topol-ogy of the wireless network. We develop an adaptive self-healing tree routing servi
e for establishing a mesh net-work among the sensors to transport the data eÆ
ientlyand reliably. We use path length and link quality to deter-mine the best routes. Originally, we employed path lengthas the primary 
riterion for establishing the tree stru
-ture; however, we found that emphasizing link quality isfar more important for robust pa
ket delivery in volatilewireless networks. Conne
tivity within the network is pe-riodi
ally 
he
ked and maintained, as ea
h node periodi-
ally sends out heartbeat messages to its neighbors. Theadvantages of this method in
lude:(1) optimal bandwidth utilization: the tree is builtfor sensor-to-sink 
ommuni
ation, whi
h is dominant in
entralized data a
quisition(2) memory eÆ
ien
y: the routing table 
onsists ofonly one node(3) simple and fast fault re
overy: the aggregationtree 
an qui
kly adapt to node failure without 
ausingglobal topology 
hanges.Finally, it is 
ru
ial that the sensors' 
lo
ks are syn-
hronized within a tight error bound. This problem doesnot arise in a 
entralized system, where there is only one
lo
k; however, distributed sensor readings are meaning-less from the appli
ation standpoint unless they 
an be
orrelated on a 
onsistent global time s
ale. We adapt theFTSP time syn
hronization proto
ol 7) to maintain 
lo
ksyn
hrony. We make this proto
ol more eÆ
ient by pig-gyba
king time syn
hronization bea
on messages on therouting tree heartbeat messages. Thus we are able to es-tablish network-wide syn
hronization with no signi�
antoverhead. The time syn
hronization servi
e 
an maintain
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Fig. 1 A

elerometer data from two sensors showing tightsyn
hronization.
better than 1ms syn
hronization on a 10-hop network forextended periods (Fig. 1). This is suÆ
ient to ensureproper syn
hronization for our target appli
ation, where
ontinuous sensing is limited to 90-se
ond intervals, andthe sampling period is 4ms.2. 2 Distributed Sensing and Data AggregationWhen put together, the sensing, routing and time syn-
hronization servi
es form the basis for building a dis-tributed sensing and 
ontrol platform. Distributed sens-ing enables the appli
ation of SHM te
hniques to large-s
ale stru
tures, and lo
al a
tuation is useful for 
ontrolappli
ations as it de
reases rea
tion time and improvesoverall system responsiveness. We use a 
omposition ofthese servi
es to emulate a 
entralized sensing system thatfeatures sensing frequen
ies and syn
hronization pre
isionsimilar to its 
entralized 
ounterparts, albeit with higherreliability. Its purpose is to fa
ilitate transition to trulydistributed sensing and 
ontrol.The 
entralized nature of the 
urrent appli
ation putssigni�
ant stress on the low-bit rate wireless 
ommuni-
ations of the mi
ro sensor devi
es. As data 
ows fromthe sensor nodes to the sink, 
ongestion be
omes a sig-ni�
ant issue, exa
erbated by the MAC layer based on aCSMA-CA (
arrier sense multiple a

ess{
ollision avoid-an
e) s
heduling algorithm 11). To address this issue, weimplement an opportunisti
 data aggregation servi
e forthe high-frequen
y sensing appli
ation.The high sensing frequen
y pla
es a bound on theamount of data pro
essing that 
an o

ur within the net-work. In parti
ular, the Fast Fourier Transform (FFT)algorithm, a 
entral part of the vibration analysis-basedstru
ture monitoring algorithms, has a run time of sev-eral minutes on the Mi
a motes 1). We are thus 
on-strained primarily to aggregators based on linear fun
-tions on the time-domain data: average, median, extrema,zero-
rossing and peak dete
tion.To be meaningful from the appli
ation standpoint, only

data from immediate physi
al neighbors 
an be aggre-gated in this manner. Aggregation operations are per-formed on timestamped blo
ks of 
ontiguous samples ifthe timestamps of two neighbors mat
h. Ea
h appli
a-tion data pa
ket 
arries up to three su
h blo
ks. Thedata aggregation servi
e is opportunisti
, meaning that
ombinable blo
ks are only aggregated if they happen tobe stored on an intermediate node at the same time whilebeing transported to the sink. This method is less eÆ-
ient than the more aggressive time-based aggregation 16),where messages are not forwarded along the tree until alater timestamp from the sour
e node arrives; however,our 
hoi
e is di
tated by the very limited bu�er spa
eavailable on the nodes.Our experimental results, dis
ussed in the next se
tion,demonstrate that our approa
h 
ombines a large fra
tionof pa
kets 
lose to the sour
e without the additional de-lays and bu�er spa
e requirements in
urred by time-basedaggregation methods. This is primarily due to the fa
tthat our the aggregation tree 
losely mat
hes the physi
altopology, given the emphasis on short, high-quality linksnoted above. 3. EvaluationWe study the performan
e of the distributed sensingsystem using two sets of experiments: a

elerometer andstrain gage sensor measurements to verify pre
ision, andnetworking tests to examine time syn
hronization, s
ala-bility and data aggregation performan
e. The obje
tiveof the experiments is to demonstrate the viability of thissystem for resear
h and industrial SHM appli
ations.We use Mi
a-2 motes from Crossbow Te
hnology, In
.2), equipped with a mix of the MTS310 sensor boards,an improved a

elerometer sensor board, and a straingage sensor board. Due to the limited hardware avail-ability of the 
ustom sensor boards, strain gage anda

elerometer experiments are 
ondu
ted on a variable-resistan
e 3-story building model, while the networkingexperiments take pla
e on a larger rigid 18-story build-ing model (Fig. 2) pla
ed on a shaking table. The tableprodu
es white noises at frequen
ies of 1 to 100Hz, thefrequen
y range used in most vibration-based SHM ap-pli
ations. Sensing is performed at 250Hz for 60 se
ondintervals. Sensors are lo
ated on ea
h 
oor of the build-ing model, spa
ed approximately 30
m apart and sepa-rated by a metal \
oor." Radio transmit power of theCC1000 
hip is redu
ed to the lowest setting (�20dB)and no external antenna is used in order to indu
e multi-hop 
ommuni
ation. In experiments, we have observed
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Fig. 2 Sensors are atta
hed to an 18-story building model ona shaking table.

Fig. 3 Frequen
y- and time-domain performan
e of wired(SD-1221), Mi
a (ADXL202E) and 
ustom (393B04)a

elerometers 13).path lengths of up to nine hops.For 
omparison, a typi
al tower building where an SHMappli
ation may be deployed is 100 to 300m tall and 
on-tain one sensor per one to �ve 
oors. More advan
ed SHMappli
ations may require multiple sensors per 
oor.3. 1 Sensor Pre
isionThe Mi
a sensor board's standard a

elerometer pos-sesses insuÆ
ient pre
ision to measure vibrations of themagnitude required for SHM. Instead, we employ sensorboards 
ustomized with an a

elerometer (Sili
on Designsmodel 1221 14)), whi
h is suitable for low noise appli
a-tions 13). Its performan
e is 
omparable to that of analoga

elerometers (e.g., PCB Piezotroni
s model 393B04 10))routinely used in wired SHM systems (Fig. 3). We alsoutilize a strain sensor developed spe
i�
ally for use inSHM appli
ations with Mi
a-2 motes 9), 
apable of mat
h-ing the resolution and sensitivity of industrial wired straingages (Fig. 4).3. 2 Data AggregationFor 
entralized sensing in a Mi
a-2 sensor network, thenodes must store their measurements in lo
al memory andlater ex�ltrate them to the pro
essing node. Data fromdi�erent sensors are aggregated along the way to the sinknode, redu
ing the overall amount of data transmitted.The eÆ
ien
y of data aggregation is 
riti
al to the s
al-

Fig. 4 Performan
e 
omparison of a wired strain sensor andthe 
ustom Mi
a-2 strain gage 9).Table 1 Aggregation 
han
e vs. distan
e from sour
e.Distan
e (hops) Blo
ks aggregated (%)1 462 133 2� 4 0
ability of the distributed sensing system. Even a fully-distributed system would still rely on data aggregation toredu
e the amount of lo
alized 
ommuni
ation, though ona neighborhood, rather than network-wide, s
ale. We nowevaluate the performan
e of the data aggregation 
ompo-nent of our system.As dis
ussed earlier, 
ompatible data blo
ks (physi
alneighbors, mat
hing timestamps) are only 
ombined ifthey happen to reside on the same intermediate node intransit to the sink. The total bandwidth 
onsumed by theex�ltration of 
ompatible data blo
ks 
an be 
omputed asB =Pi hi + h
, where hi is the number of hops the ithblo
k is forwarded prior to aggregation and h
 is the num-ber of hops remaining after aggregation. It is 
lear fromthis formula that the most important metri
 to gauge theeÆ
ien
y of this strategy is not just the number of blo
ksa
tually 
ombined, but also the lo
ation in the tree wherethe 
ombination pro
ess takes pla
e.Table 1 summarizes this information. About 62% ofthe total number of data pa
kets generated are a
tually
ombined by our data aggregation servi
e. This is sig-ni�
antly less than the 
lose to 100% 
ombination ratethat 
an be a
hieved with time-based data aggregation;however, this is primarily due to the very small �ve-blo
kaggregation bu�ers available on the Mi
a-2 as a 
onse-quen
e of the limited RAM spa
e.Sin
e near-real time pro
essing of the data is desirablefor long-term stru
ture monitoring, laten
ies in
urred indata transport and aggregation are also an important per-forman
e metri
. Table 2 shows the time it takes totransfer all of the data re
orded at 250Hz for 60 se
ondsand the ratio of aggregation time to sensing time, for vary-
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ing numbers of sensors. The data aggregation phase isquite long even with a relatively small number of sensors.This is to be expe
ted, sin
e even two sensors 
an fullysaturate the bandwidth of the sink node. (Note that thetheoreti
al maximum bandwidth of a Mi
a-2 mote is lim-ited to only 19.2Kbps.) Additional sensors 
ompeting forthe bandwidth only in
rease 
ongestion and exa
erbatethe sensing/aggregation imbalan
e.There are several 
auses for the long aggregation times,parti
ularly as the number of sensors is in
reased. Firstand most important, the bandwidth be
omes saturatedat the top levels of the routing tree. Se
ond, as the wire-less 
hannel utilization grows, the frequen
y of 
ollisionsresulting in pa
ket loss grows sharply sin
e the 
ollisionavoidan
e-based MAC proto
ol is ineÆ
ient in high traf-�
 volume 
onditions. Lastly, limited bu�er spa
e anda
knowledgment-based reliable 
ommuni
ation result in alarge number of retransmissions as pa
kets and a
knowl-edgments are dropped at intermediate nodes. Retrans-mitted pa
kets are also mu
h less likely to be aggregated,as the 
han
es of en
ountering pa
kets from neighboringnodes with the same timestamp are quite small.To demonstrate that the performan
e degradation in-herent in the 
on�guration of the nodes and not an arti-fa
t of or design or implementation, we simulate the per-forman
e of the system with the same network topology,but with a 
ollision-free MAC layer with 100% 
hannel
apa
ity utilization and lossless 
hannels. This is the ab-solute best-
ase s
enario for this problem. Note howeverthat even in this 
ase pa
ket drops and retransmissionsmay still o

ur due to insuÆ
ient bu�er spa
e at interme-diate nodes. Fig. 5 presents a performan
e 
omparison ofthe best-
ase simulation and the experimental implemen-tation. While these numbers are somewhat better thanthe experimental results, the best-
ase s
enario exhibitssimilar s
alability behavior. Bandwidth and bu�er spa
e
onsiderations 
ontinue to limit the s
alability of the dataaggregation servi
e. We dis
uss the impli
ations of this�nding in the next se
tion.4. Dis
ussionThe 
ore problem for high-frequen
y sensing appli
a-

Fig. 5 Performan
e 
omparison of the best-
ase simulationand experimental measurements.tions is that they simply generate too mu
h data to beeÆ
iently transported over the network. Data 
ompres-sion may help alleviate the sensing/aggregation imbalan
eto some extent, although only by a 
onstant fa
tor. Moreaggressive data aggregation approa
hes may also providesome bene�t 4), 6), 16). Neither is likely to solve the prob-lem 
ompletely, however.Another way to ta
kle the bandwidth and bu�er spa
elimitations is to employ in situ data pro
essing: lettingsensors perform lo
al pro
essing on the raw data andtransfer only the summary results would keep the net-work from being saturated. In the Mi
a-2 platform, onemi
ropro
essor 
ontrols both sensing and 
ommuni
ationon a node. Having separate 
ontrollers, a 
apability of-fered by more powerful Intel motes 8), would enable 
on-
urrent sensing and 
ommuni
ation, further redu
ing theextent of the imbalan
e. Su
h an ar
hite
ture would alsoopen up the possibility of new 
ommuni
ation 
ontrollerdesigns optimized for power usage 5).In prin
iple, the problem stems from the design oflow-rate 
ommuni
ation proto
ols in emerging WSNs(e.g., the Mi
a-2 proto
ol and ZigBee/IEEE 802.15.4 15)).Given the limited power supply, the 
hoi
e of \low-rate" isun
ompromisable. Thus, these low-bandwidth networks
annot perform well in high-volume data transfers, whi
hare unavoidable in 
entralized SHM appli
ations. Our ex-periments have 
on�rmed this, and lead us to 
on
ludethat SHM appli
ations built on WSNs should be fullydistributed, limiting the s
ope over whi
h the data is tobe aggregated. Our 
ommuni
ation and syn
hronizationservi
es will fa
ilitate the transition.5. Con
lusionThrough the experiments using realisti
 building mod-els we have shown that our data a
quisition system is
apable of a
hieving time syn
hronization pre
ision andsensing resolution 
omparable to those observed in wired
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olle
-tion phase, while signi�
antly longer than in wired sensingsystems, 
an still a

ommodate SHM appli
ations wheresensing periods are interspersed with long intervals of in-a
tivity. This system is also more robust than its 
entral-ized, wired prede
essors. Further, the high adaptability ofour modular design makes it suitable for use in fully dis-tributed sensing and 
ontrol appli
ations, whi
h we viewas a key future dire
tion for stru
tural health monitoringand 
ontrol resear
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