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A Bayesian Theory of Cooperative Calibration

and Synchronization in Sensor Networks†

Shigeru Ando ∗ and Nobutaka Ono ∗

This paper proposes a method for calibrating networked sensors from local duplicated measurements in cou-

ples of sensors among them. In the Bayesian framework, we show the system and procedure for the optimum

collaborative calibration/synchronization is composed by: 1) sensor-wise maintenance of the offset values and a

corresponding column of inverse of the estimation error covariance matrix (confidence matrix), 2) incremental

updates of the confidence matrix elements for the coupled sensors with the confidence of the duplicated measure-

ment, and 3-1) centralized computation for inverting the confidence matrix into the estimation error covariance

matrix and sensor-wise computation for obtaining updated estimates of the offset values, or 3-2) global iterative

computation of the updated estimates among all the sensors.
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1. Introduction

Sensor networks consist of numerous nodes being capa-

ble of sensing, computation, and communication. They

cooperate each other to combine individual sensor mea-

surements into a high-level sensing result relying on the

consistency among their internal clocks and references.

In large-scale sensor networks, however, the consistency-

keeping is a very difficult task since sensor nodes are usu-

ally inaccessible because of their deployed, dynamic, and

ad hoc natures.

This paper deals with the method for the calibration

and synchronization of networked sensors 3), 4), 6) from du-

plicated measurements among them 7), 8). It is well known

that the information for calibration/synchronization is ob-

tained only when two or more sensors detect the same

object and compare the results each other. But in usual

sensor networks, those events occur only locally and are

not shared by all the sensors. Examples include: de-

tecting the same signal waveform with individual time

stamps, measuring the same quantity with each internal

references, eventually encountered mobile location sensors

at the same place and time, etc. How should we design

the correcting scheme of their internal clocks or references

for the steady growth of global consistency? How should
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we combine the sensor-to-sensor corrections into the con-

sistent ones among all the sensors? How should we prop-

agate the established results among a sensor group to an-

other group of sensors established differently?

2. Theory

2. 1 Problem and notation

We consider the synchronization problem. Extension to

general calibration cases will be straightforward.

At an event, a couple of sensors detect the difference be-

tween each offset time. Let the estimates of the offset time

of each sensor after the kth event be (∆k
1 ,∆k

2 , · · · ,∆k
n).

Let the estimation error covariance matrix of them be

Σk = [ σk
ij ]. At the (k + 1)th event between the sensors

i and j, the difference tij of their offset times was ob-

served with the error variance σ2. Then, obtain the new

estimates of the offset time (∆k+1
1 ,∆k+1

2 , · · · ,∆k+1
n ) and

their estimation error covariance matrix Σk+1 = [ σk+1
ij ]

or its equivalence.

2. 2 Successive Bayesian estimate 10)

Let the all measurements until the kth event be Y k.

Let the measurement at the (k +1)th event be yk+1. Let

the variable to be estimated be x. Then, by using the

Bayes formula and the assumption that the measurement

noises are independent, it follows that

p(x|Y k+1)=p(x|yk+1,Y k)

=
p(yk+1|x)p(x|Y k)∫
p(yk+1|x)p(x|Y k)dx

,

where p(·|·) denotes the conditional probability density

function (pdf). This equation provides us the Bayes esti-
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Fig. 1 Situation of the problem. Most sensors in a network

are uncalibrated/unsynchronized although some may

be accurate. The inconsistency is detected only when

two sensors of them detect eventually the same event.

mates of x based on the whole measurements Y k+1 until

the (k + 1)th event (k = 0 indicates the initial state be-

fore the first event) and also the updating formula from

the pdf p(x|Y k) until the kth event to the pdf p(x|Y k+1)

including the (k + 1)th event.

For the normal distribution case when the observation

equation is expressed as y = Bx +n, the updated pdf is

also the normal distribution, hence is characterized by the

average vector and the covariance matrix. The exponent

of the product p(yk+1|x)p(x|Y k) is expressed as

(y−Bx)TΣ−1
n (y−Bx) + (x−xk)TΣ−1

k (x−xk)

≡ (x−xk+1)TΣ−1
k+1(x−xk+1),

where Σn is the covariance matrix of the observation

noise. Comparing both sides of the above equation, the

updating equations for the average vector and the covari-

ance matrix of x is thus expressed, respectively, as

Σ−1
k+1=BTΣ−1

n B +Σ−1
k (1)

x
k+1=xk +Σk+1B

TΣ−1
n (y − Bxk). (2)

2. 3 Successive estimate of offset times: direct

solution

For the synchronization problem, actual forms of the

pdf are expressed as

p(yk+1|x)= 1√
2πσ2

exp{−1

2

((∆i −∆j) − tij)
2

σ2
}

p(x|Y k)=
1

|2πΣk|1/2
exp{−1

2
(x−xk)TΣ−1

k (x−xk)}.

Since

B ≡
[

0 · · · 1 · · · −1 · · · 0

]
,

the updating equations are expressed as

Σ−1
k+1 =




λk
11 · · · λk

1i · · · λk
1j · · · λk

1n

...
...

...
...

λk
i1 · · · λk

ii+λ · · · λk
ij−λ · · · λk

in

...
...

...
...

λk
j1 · · · λk

ji−λ · · · λk
jj+λ · · · λk

jn

...
...

...
...

λk
n1 · · · λk

ni · · · λk
nj · · · λk

nn




and


∆k+1
1

...

∆k+1
i

...

∆k+1
j

...

∆k+1
n




=




∆k
1

...

∆k
i

...

∆k
j

...

∆k
n




+ Σk+1




0

...

λ(tij −∆k
i +∆k

j )

...

−λ(tij −∆k
i +∆k

j )
...

0




(3)

where λ ≡ 1/σ2 and λk
ml is the (m, l)th element of Σ−1

k .

The above equations lead to the following procedures

for the optimum synchronization. Each sensor indicated

by l maintains a corresponding column or row of Σk

and Σ−1
k , i.e., {σk

l1, σ
k
l2, · · · , σk

ln} and {λk
l1, λ

k
l2, · · · , λk

ln},
respectively. At the synchronizing event, the update of

{λk
l1, λ

k
l2, · · · , λk

ln} begins for the coupled sensors l = i, j

with

λk+1
im =λk

im (m = 1, 2 · · · , n �= i, j)

λk+1
ii =λk

ii + λ, λk+1
jj = λk

ii + λ (4)

λk+1
ij =λk

ij − λ, λk+1
ji = λk

ji − λ,

and for the sensor l �= i, j, remains unchanged as

λk+1
lm =λk

lm (m = 1, 2, · · · , n) (5)

which result in the updated matrix Σ−1
k+1. Then its in-

verse, the estimation error covariance matrix Σk+1, is

taken to obtain {σk+1
l1 , σk+1

l2 , · · · , σk+1
ln } for all sensors. By

using them, each sensor obtains the update of the offset-

time estimates such that

∆k+1
l =∆k

l + λ(σk+1
li − σk+1

lj )(tij −∆k
i +∆k

j ). (6)

Clearly, an essential part of the procedure, the matrix

inversion, must be performed in a centralized manner. All

the elements of Σ−1
k+1 must be gathered somewhere to take

its inverse and the elements of it must be redistributed to

the corresponding sensors.

2. 4 Successive estimate of offset times: itera-

tive solution

The matrix inversion can be omitted if we use an iter-
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ative procedure as follows. Since xk+1 is the minimum

of

J ≡ (x−xk)TΣ−1
k (x−xk) + (y−Bx)TΣ−1

n (y−Bx),

we can apply the steepest descent method

x
(i+1)=x(i) − α{Σ−1

k (x(i)−xk)− BTΣ−1
n (y−Bx(i))}

=x(i) − α{Σ−1
k+1(x

(i)−xk) − BTΣ−1
n (y − Bxk)},

where α is a positive constant and (i) is the number of iter-

ation. The calculation can be performed parallel and dis-

tributedly by all sensors. Namely, for the sensor l �= i, j

∆
(i+1)
l = ∆

(i)
l − α

n∑
m=1

λk+1
lm (∆(i)

m −∆k
m) (7)

and for the sensors l = i, j,

∆
(i+1)
i =∆

(i)
i − α{

n∑
m=1

λk+1
im (∆(i)

m −∆k
m)

− λ(tij −∆k
i +∆k

j )} (8)

∆
(i+1)
j =∆

(i)
j − α{

n∑
m=1

λk+1
jm (∆(i)

m −∆k
m)

+ λ(tij −∆k
i +∆k

j )}. (9)

To ensure rapid convergence and stability, α should be

varied according to

α−1 ∝
n∑

i=1

λii.

The information to be transferred among sensors at

each iteration is only the transient values of estimates

(∆
(i)
1 ,∆

(i)
2 , · · · ,∆(i)

n ) and the gain α of the iteration.

3. Numerical simulation

3. 1 Initial setting

The offset times of almost all sensors are large and in-

dependent each other. This leads when k = 0 to

σ0
ll = σ2

rand, σ0
lm = 0 (m = 1, 2, · · · , n − 1) (10)

where σ2
rand is the estimated variance of the offset time.

When the offset times can have an unknown systematic

bias, it should be included by setting

σ0
ll = σ2

rand + σ2
bias, σ0

lm = σ2
bias, (11)

where σ2
bias is the estimated variance of the bias. Actually,

the inverse of them must be distributed as

λ0
ll=

1

σ2
rand

− σ2
bias

σ2
offset(σ

2
rand + nσ2

bias)
(12)

λ0
lm=− σ2

bias

σ2
rand(σ

2
rand + nσ2

bias)
(13)

which can be calculated independently by each sensor. In

addition to the above uncalibrated and unsynchronized

(a) k = 0

(b) k = 2

(c) k = 4

(d) k = 12

(e) k = 13

Fig. 3 Brightness view of the estimation error covariance ma-

trix of the experiment in Fig.2. The brightness (middle

gray means zero) of small squares indecates the value

of the matrix element. The left and right images are

Σ−1
k

and Σk , respectively. Initially (k = 0), the esti-

mation errors are large and independent. Until k = 4,

the sensors (1,3,7,8,9) and (5,6) are coupled together

and grouped independently. The elements correspond-

ing to each group are filled uniformly. This shows they

are synchronized.

sensors 1, 2, · · · , n − 1, we mixed an accurate one with a

reliable standard clock as

σ0
nn 
 σ2

rand, σ0
nm = 0. (14)

To each sensor l, a true offset time ∆i was generated ran-

domly according to the assumed variance of it. All initial

estimates of the offset time are

∆0
1 = ∆0

2 = · · · = ∆0
n = 0. (15)

3. 2 Time difference measurement

For each measurement, sensors i and j are randomly

selected. The measurement was generated by adding a

random noise with a variance σ2 to the true difference

∆i −∆j . The estimates of the offset time were updated

according to the prescribed equations.

3. 3 Results

Fig.2 shows an example of result. The sensors are given

large and random offset times initially. According to the
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Fig. 2 An example of result. The sensors are given initially large and random offset

times shown by the 0th event. According to the increase of the event count, the

number of coupled sensors increases and the estimation error variances reduce

monotonically for the coupled ones. For the lately coupled sensors, the reduc-

tion of error variance is drastic. But after novel sensors exhausted (k = 12),

they become almost constant. The topmost row of numbers indicate coupled

sensors at the event.

increase of the event count, the number of coupled sen-

sors increases and the estimation error variances reduce

monotonically for the coupled ones. For the lately cou-

pled sensors, the reduction of error variance is drastic.

But after novel sensors exhausted (k = 12), they become

almost constant. Fig.3 shows brightness-encoded views

of the sequence of Σ−1
k (left) and Σk (right). Initially,

the estimation errors are large and independent. Until

k = 4, the sensors (1,3,7,8,9) and (5,6) have been coupled

together and grouped independently. The elements of Σk

corresponding to each group are filled uniformly. This

shows they are synchronized (fully correlated).

Fig.4 shows another example of result. Except for sen-

sor 10, offset times are assumed to be biased, hence Σk is

still large after the synchronization from 1 to 9 has com-

pleted. At k = 16, one sensor encountered the sensor 10

with an accurate clock, then all the offset times including

the bias became zero at a time. Fig.5 shows brightness-

encoded views of this experiment. At k = 14, all the

sensors except one finished coupling and the correspond-

ing elements of Σk became flat although the values were

nonzero. At k = 16 shown in Fig.5(e), one of the sensors

encountered the sensor 10 with an accurate clock. Then

all the nonzero elements of Σk decreased at a time to a

level of sensor 10, which means all clocks of sensors were

adjusted to an accurate one of the sensor 10.

4. Possible generalization

The primary subject of generalization will be the in-

troduction of the handling capability of the temporal in-

crease of ambiguity. The problem involves inaccuracy of

clock frequency which grows into the varying offset time

in the passage of time. Generalization to this problem is

possible by introducing the diffusion process of the con-

ditional pdf between the events, which results in the con-

tinuous time Kalman filtering with discrete observations.

Another interesting subject will be the extension to the

simultaneous calibration of clock and location. This will

be possible when two or more RF sources 8) are detected

simultaneously by a couple of sensors. Interesting sce-
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Fig. 4 An example of result. Except for sensor 10, offset times are assumed to be bi-

ased, hence Σk is still large after the synchronization from 1 to 9 has completed.

At k = 16, one sensor encountered the sensor 10 with an accurate clock, then

all the offset times including the bias became zero at a time.

nario is the use of RF waveform transmitted from RF-ID

as the synchronizing event. The ID tag can be used both

to assure the duplicated detection of event and to share

the physical parameters and models (frequency, location,

pose, etc.) of the RF source and the tagged object as

those in the Tag-based Vision Systems 11)∼14).

5. Conclusion

This paper proposed a method for calibrating net-

worked sensors from local duplicated measurements in a

couple of sensors among them. In the Bayesian frame-

work, we obtained the solution to this problem and

showed that:

(1) The solution is expressed as an updating scheme

of the estimates ∆k
1 ,∆k

2 , · · · ,∆k
n and the inverse of esti-

mation error covariance matrix Σ−1
k .

(2) Each sensor holds ∆k
1 ,∆k

2 , · · · ,∆k
n and a corre-

sponding column of Σ−1
k .

(3) At a pair-wise duplicated measurement, the cou-

pled sensors increase the related 2× 2 elements of Σ−1
k

by the inverse of observation noise variance 1/σ2 to ob-

tain the update Σ−1
k+1.

(4) In the centralized scheme, all the elements of

Σ−1
k+1 is gathered, inverted, and redistributed to the

corresponding sensors to obtain the new estimates

∆k+1
1 ,∆k+1

2 , · · · ,∆k+1
n .

(5) In the decentralized

scheme, ∆k+1
1 ,∆k+1

2 , · · · ,∆k+1
n are calculated by each

sensor using an iteration scheme although the transient

estimates must be transfered each other among all the

sensors.

(6) For a group of sensors chained by duplicated mea-

surements, all elements of Σk become nearly equal, thus

estimation errors of the grouped sensors become fully

correlated.

(7) Communication needed to achieve the collabora-

tive calibration is described essentially by the backward

inversion process of the inverse of estimation error co-

variance matrix Σ−1
k+1.
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