
Special issue on International Workshop on Networked Sensing Systems

Trans. of the Society of Instrument
and Control Engineers
Vol.E-S-1, No.1, 33/42 (2006)

Approximate Causal Observer†

Sandeep S. Kulkarni ∗ and Mahesh Arumugam ∗

In this paper, we focus on the problem of approximate causal delivery. This problem identifies the tradeoff

between causal delivery and timely delivery of messages. Causal delivery requires that delivery of a message, say

m, be delayed until all messages on whom m is causally dependent are delivered. By contrast, timely delivery

requires that messages be delivered as soon as possible. In the context where messages could be lost and the

value of messages decreases as the delay increases, the requirements of causal delivery and timely delivery are

conflicting.

We show how a simple logical timestamp program can be used to obtain a solution for approximate causal

observer. This solution is intended for systems that provide simple guarantees about the clock drift and about

maximum delay of messages that are not lost. While O(n2) unbounded integers are required to implement perfect

causal delivery, our solution uses only O(log n) bounded space. Our solution permits a process to tradeoff between

causal delivery and timely delivery, i.e., it allows the process to choose the level of causality violations it can

tolerate (0% or more) and the time for which it will have to buffer the received messages. We also show that

the information maintained by our program, although small, is important to provide such a tradeoff; we show

that the number of causality violations increase by an order of magnitude if this information is not maintained.

Finally, we show how our solution can be used to observe computations in sensor networks while providing a

continuum where one can choose the size of the timestamps based on the acceptable level of causality violations.

Key Words: Causal delivery, Timeliness, Logical timestamps, Sensor networks

1. Introduction

The ability to observe distributed computations is one

of the important problems in many systems. Such a prob-

lem arises in several contexts. For example, consider an

application in sensor networks (e.g., MICA motes [1])

where a group of sensors need to track a moving object

(e.g., [2]). In such a system, the sensors communicate

their observations about the object they are tracking with

each other. However, due to limited memory/computing

power and small size, a sensor cannot provide human read-

able output. Hence, these applications typically include

a more powerful visualization unit (e.g., a PC) that is

responsible for providing the required human readable

output. Thus, the visualization unit observes the com-

munication among sensors and uses its high computing

power/memory to display/interpret the communication

among sensors.

Other applications of such observer occur in debugging

of distributed programs. In these applications, the debug-

ger observes the communication among processes to study

† Presented at INSS2004 (2004.6)
∗ Computer Science and Engineering, Michigan State Univer-

sity, East Lansing MI 48824 USA

(Received November 12, 2004)

(Revised April 7, 2005)

the behavior of the underlying program, and to identify

potential violations of specifications. Yet another appli-

cation includes monitoring distributed programs. Again,

in such an application, the monitor receives the copies of

(relevant) messages that are sent by the underlying pro-

cesses. The monitor uses these messages to examine the

behavior of the underlying program.

Since the order in which the observer receives messages

may be different from the order in which the communi-

cation occurred in the underlying system, the observer

needs to reorder messages consistently. While it may be

impossible to recreate the exact scenario that occurred in

the underlying system, it is desirable to obtain at least a

consistent view at the observer. One way to obtain such

consistent view is to ensure that the observer delivers the

messages in a causal order.

One additional requirement for online observers is that

they should be timely, i.e., the observer needs to recon-

struct the underlying computation quickly. As an illustra-

tion, in the sensor network example given above, the visu-

alization of the underlying computation should be in real-

time and, hence, the visualization unit must act quickly on

the messages received so that the visualization does not

significantly lag behind the original computation. Like-

wise, if monitoring is used to identify potential errors in

34 T.SICE Vol.E-S-1 No.1 2006

the system computation then the monitor needs to iden-

tify the potential errors quickly.

It is easy to observe that there is a potential conflict

between achieving causal delivery and delivering mes-

sages quickly. Causal delivery requires that a message be

buffered until all messages that causally depend on it are

delivered. However, timely delivery requires that a mes-

sage be delivered as soon as possible. Since these goals are

contradicting, it is necessary to develop protocols where

the observer can choose the level of causality violations

it can accept to ensure timely delivery of messages. In

other words, if the observer introduces additional delays

during delivery of messages then the number of causality

violations should be reduced. We call this the problem of

approximate causal delivery. And, an observer that pro-

vides approximate causal delivery is called approximate

causal observer.

Clearly, based on the result in [3], one cannot design so-

lutions for such approximate causal delivery in pure asyn-

chronous systems where process speeds, process clocks

and message delays are arbitrary. In other words, the un-

derlying system must provide some simple guarantees that

enable the observer to obtain the tradeoff between causal

delivery and timely delivery. We focus on two simple guar-

antees from the underlying system: The first guarantee is

related to the clocks; we require that the system provide

a bound, say ε, such that the clock drift between different

processes (underlying processes as well as the observer) in

the system is bounded by ε. This guarantee can be met by

using GPS clocks, network time protocol, atomic clocks

or clock synchronization programs (e.g., [4–6]). The sec-

ond guarantee relates to the message delays; we require

that messages that reach their destination do so within

some bound, say δ. This guarantee can be met by using

protocols that characterize messages as being timely or

late (e.g., [7]).

One can use solutions such as matrix clocks [8] to solve

the problem of approximate causal delivery. However,

this approach suffers from four problems; for one, ma-

trix clocks do not use the underlying physical clock and,

hence, cannot easily handle timely delivery. For two, the

protocol in [8] cannot handle lost messages; all subsequent

messages that causally depend on the lost message be-

come undeliverable. Thirdly, the size of the timestamp

used in [8] is O(n2) where n is the number of processes

in the system. Such a large size could be especially prob-

lematic in systems where the number of processes is large.

Finally, in [8], as the computation proceeds, the size of

the timestamps grows without a bound. While solutions

in [9,10] deal with the first two problems, these solutions

still suffer from the overhead of timestamps whose size

is quadratic in the number of processes and whose size

grows unbounded as the computation proceeds.

Another related work on causal delivery in sensor net-

works is [11] where a temporal message ordering service is

proposed. In this approach, the senor network is modified

to achieve temporal message ordering at base station. To-

wards this end, they send each message by multiple routes,

one or more short and one or more long. By contrast, in

our work, we do not assume such multiple messages. In

fact, we do not modify the underlying communication in

the sensor network. The reordering is done only at the

base station. It follows that our approach allows one to

make use of any optimizations that can be performed in

the routing layer.

With this motivation, in this paper, we focus on adapt-

ing the algorithm in [12] to obtain approximate causal

delivery. This algorithm has several helpful features; for

one, the size of the timestamps is bounded, i.e., it does

not grow as the computation proceeds. Also, the size of

the timestamps is proportional to the system guarantees,

i.e., if the system guarantees are improved then the size

of the timestamps is reduced. Moreover, the size of the

timestamps is O(ε log n + log δ) where n is the number

of processes in the system.

Contributions of the paper. In this paper, we

present two algorithms for approximate delivery. The

first algorithm is based on delivering the messages ear-

lier than that prescribed by the algorithm in [12]. Based

on the ability to tolerate causality violations, this algo-

rithm allows the observer to reduce the delivery time of

messages. We also show that a simple modification to the

first algorithm, checking messages that the observer has

received to determine if they might violate the require-

ments of causal delivery, allows us to reduce the number

of causality violations further. Also, we study the effect of

changing various parameters (clock drift, message delay,

and message rate) on approximate causal delivery.

We also show that even though the timestamps used in

these algorithms do not have all the information necessary

for detecting causality violations, the information main-

tained by the algorithms is highly valuable in reducing the

number of causality violations. To illustrate this, we show

that if only physical clock is used to obtain causal deliv-

ery then the number of causality violations increase sig-

nificantly. Thus, small additional information maintained

by the algorithm plays an important role in reducing the

number of causality violations.

T. SICE Vol.E-S-1 No.1 January 2006 35

Finally, we show that the timestamp provides a contin-

uum, i.e., the application developer can choose the size of

timestamp by considering the number of causality viola-

tions and message delay the application can handle. In

other words, if the overhead of the timestamps is too large,

the developer can reduce the size of the timestamp at the

cost of increased causality violations and/or increased de-

lay.

Organization of the paper. The rest of the paper

is organized as follows. In Section 2, we present our sys-

tem model. Then, in Section 3, we present the algorithm

for causal delivery in [12] and recall its relevant proper-

ties. In Section 4, we present our approaches for approxi-

mate causal delivery. In Section 5, we state our simulation

model. And, in Section 6, we show the effect of various pa-

rameters on approximate causal delivery of messages and

also show that the application can choose the size of the

timestamp depending on the level of causality violations

it can tolerate. Finally, in Section 7, we make concluding

remarks and discuss future work.

2. System Model

A distributed system consists of finite set of processes

which communicate via message passing. For simplicity,

we do not distinguish between the processes and the pro-

cessors they run on. Each process j has a physical clock

rt.j.

As discussed in Introduction, in the absence of faults, a

distributed system must provide some guarantees that will

enable the observer to obtain a tradeoff between causal

delivery and timely delivery. In the presence of faults,

these guarantees may be violated temporarily. We focus

on the following two guarantees about the bound on max-

imum clock drift (for example, using [6]) among different

processes (sensors) and the bound on message delay.

Guarantees of the distributed system.

G1. The value of rt.j is non-decreasing, and at any

time, the difference between the clock values of any two

processes is bounded by ε. In other words,

∀j, k : |rt.j − rt.k|≤ε

G2. Let mj be a message sent by process j to k. Also,

let stm denote the clock value of j when j sent mj , and

let rdm denote the clock value of j when k received mj .

We require that k should receive mj within time δ unless

mj is lost. In other words,

((rdm ≤ (stm+δ)) ∨ rdm =∞)

Notation. A distributed system instantiated with pa-

rameters ε and δ is denoted as ds(ε, δ).

Execution of a process consists of a sequence of events;

an event can be a local event, a send event, or a receive

event. In a local event, a process neither receives nor

sends a message. In a send event, a process sends one or

more messages, and in a receive event, a process receives

one or more messages. For simplicity, we assume that one

clock tick of j corresponds to at most one event at process

j. Note that, we can weaken this assumption so that one

clock tick corresponds to at most K events, where K is

any constant.

We assume that there is a special observer process in

the system. A copy of relevant messages sent by any pro-

cess is also sent to the observer. The observer buffers the

messages and delivers them in such a way that the number

of causality violations is acceptable. Note that we do not

assume that the observer can precisely determine causal

relations between two messages.

Notation. In this paper, we use i, j, k and l to denote

processes. We use e, f and g to denote events. Where

needed, events are subscripted with the process at which

they occur, thus, ej is an event at j. We use m to denote

messages. Messages are subscripted with the process that

sends the message. Thus, mj is a message sent by j.

3. Logical Timestamps and Causal De-

livery

In this section, we present the algorithm for logical

timestamp (Section 3. 1) and causal delivery (Section 3. 2)

from [12]. We use the causal delivery algorithm in Section

3. 2 for achieving approximate causal delivery.

3. 1 Logical Timestamp

Before presenting the program, we define the notion of

happened-before, −→ among events.

Happened-before. The happened-before relation [13]

is the smallest transitive relation that satisfies, for any

events e, f , e −→ f if (1) e and f are events on the same

process and e occurred before f , or (2) e is a send event

in one process and f is the corresponding receive event in

another process.

Solution to logical timestamp. In the solution to

the logical timestamps proposed in [12], the timestamp of

an event ej at process j is of the form 〈rt.ej , c.ej , kn.ej〉,

where rt.ej denotes the physical clock value of j when

ej was created. The variable c.ej denotes the difference

between the knowledge j had about the maximum clock

value in the system and the physical clock value of j.

The variable kn.ej is an array of size 2ε. The variable

kn.ej [t],−ε ≤ t < ε, captures the knowledge about the

number of events f such that r.f = r.ej + t and f −→ e.

Each process j in the system maintains rt.j, r.j, c.j and

kn.j. (The algorithm works correctly even if j maintains

(rt.j mod B) instead of rt.j, where B ≥ ε+δ+1. Thus,

36 T.SICE Vol.E-S-1 No.1 2006

the space required for maintaining rt.j is bounded.) The

variable rt.j represents the physical clock value at j and

〈r.j, c.j, kn.j〉 represents the timestamp of the last event

at j. The initial and update rules for different events are

presented in Figure 1. Note that, for simplicity of presen-

tation, we assume kn.j[t] = 0 if t < −ε or t ≥ ε.

Initially:

rt.j, r.j, c.j = 0,

∀t : t 6= 0 : kn.j[t]=0, kn.j[0]=1

Local event ej or

Send event ej (message being sent is mj)

c.j := max(0, r.j + c.j − rt.j)

∀t : −ε ≤ t < ε : kn.j[t] := kn.j[t + rt.j − r.j]

kn.j[0] := kn.j[0] + 1

r.j := rt.j

r.ej , c.ej , kn.ej := r.j, c.j, kn.j

if ej is a send event then

r.mj , c.mj , kn.mj := r.j, c.j, kn.j

Receive event ej (message m received

with timestamp 〈r.m, c.m, kn.m〉)

c.j := max(0, r.j + c.j − rt.j, r.m + c.m − rt.j)

∀ t : −ε ≤ t < ε : kn.j[t] :=

max(0, kn.j[t + rt.j − r.j], kn.m[t + rt.j − r.m])

kn.j[0] := kn.j[0] + 1

r.j := rt.j

r.ej , c.ej , kn.ej := r.j, c.j, kn.j

Fig. 1 Logical timestamp program

Comparing timestamps. Let 〈r.ej , c.ej , kn.ej〉 and

〈r.fk, c.fk, kn.fk〉 be two timestamps. The less function

for comparing timestamps based on the logical timestamp

program in Figure 1 is as follows:

less(〈r.e,j c.ej , kn.ej〉, 〈r.fk, c.fk, kn.fk〉)

iff

(r.ej + c.ej ,kn.ej [c.ej], kn.ej [c.ej − 1], . . . ,

kn.ej [c.ej − ε + 1], j)

< // lexicographic comparison

(r.fk + c.fk,kn.fk [c.fk], kn.fk [c.fk − 1], . . . ,

kn.fk [c.fk − ε + 1], k)

In the above comparison, kn values are compared only

when r.e + c.e equals r.f + c.f . Thus, kn.f [c.f] is com-

pared with kn.e[r.f + c.f −r.e](= kn.e[c.e]). Since kn.f [t]

denotes the knowledge about events at r.f + t, the com-

parison of kn values allows us to determine if fk was aware

of more events than ej .

Properties of the logical timestamp program.

The logical timestamp program presented above has the

following properties. (We refer the reader to [12] for

proof.)

• ∀e, f :: e −→ f

⇒ less(〈r.e, c.e, kn.e〉, 〈r.f, c.f, kn.f〉).

• The value of c.e is less than ε and the value of each

element in kn.e is less than n, where n is the number

of processes in the system. Hence, the space needed by

the timestamp is O(ε log n + log δ). Further, it does

not grow as the computation proceeds.

3. 2 Causal Delivery Program

The causal delivery program proposed in [12] is as

follows: Whenever a process j receives a message m,

j buffers the message until delcond(m, j) = (rt.j =

r.m + c.m + δ + ε) is satisfied. As soon as the

delcond(m, j) is satisfied, the message is delivered. If

two or more messages satisfy the delivery condition si-

multaneously then process j determines the causal rela-

tion among the messages and delivers them accordingly.

If mj and mk satisfy the delivery condition simultane-

ously and less(〈r.mj , c.mj , kn.mj〉, 〈r.mk, c.mk, kn.mk〉)

is true, then mj is delivered before mk.

Properties of the causal delivery program. The

causal delivery program presented above has the following

properties (cf. [12]).

• If process j sends a message m when its physical clock

value was r.m then the message would be delivered be-

fore the physical clock value of j reaches r.m + δ + 3ε.

• If two messages m1 and m2 such that send(m1) −→

send(m2) arrive at any process j then m1 is delivered

before m2.

• The causal delivery program is stabilizing fault-

tolerant [14], i.e., starting from an arbitrary state —that

may be reached by temporary violation of system guar-

antees or improper initialization of processes or tran-

sient state corruption of processes or message loss—, it

eventually recovers to states from where its specification

is satisfied.

4. Approaches for Approximate Causal

Delivery

The algorithm presented in Section 3. 2 uses the delivery

condition delcond(m, j) to deliver a message m to process

j. This condition is necessary for correctness, i.e., to en-

sure all messages are delivered in causal order. In other

words, there exists messages for which this condition is

optimal.

In the algorithm in Section 3. 2, message m is delivered

at process j when rt.j =r.m+c.m+δ+ε. Thus, c.m+δ+ε

is the approximate delay in obtaining causal delivery. We

consider the case where messages are delivered before this

delivery condition is satisfied. However, instead of choos-

T. SICE Vol.E-S-1 No.1 January 2006 37

ing fixed values for the reduced delay, we let the delay

be proportional to the underlying system guarantees and

any other information that m carries.

In the algorithm in Section 3. 2, r.m+c.m captures the

knowledge that the sender of m had about the maximum

clock in the system. Also, ε and δ depend on the under-

lying system guarantees. Hence, we let the reduced delay

to be a certain percentage of the delay incurred while en-

suring causal delivery. Thus, the actual delay incurred

by messages depends on the underlying system guaran-

tees (ε, δ) and the knowledge (c.m) that m had ‘about

the future’.

Based on this approach for reducing the delay, we

present two algorithms for approximate causal delivery:

(1) deliver after partial wait and (2) check before deliv-

ery.

Deliver After Partial Wait (DAPW). In this

algorithm, we use the following delivery condition:

delcond(m, j) = (rt.j = r.m + c(c.m + δ + ε)), where

0% < c < 100%. Thus, c =0% means that the messages

are delivered to the observer when the clock of observer

is at least r.m, or as soon as the message arrives at the

observer, whichever is later. And, c = 100% means that

the messages are delivered in perfect causal order. Thus,

by using different values for c, the application can choose

the delay in delivery.

Check Before Delivery (CBD). In DAPW, when-

ever a message, say m1 is about to be delivered to pro-

cess j, if there is a casually related message m2 such

that send(m2) −→ send(m1) is true and m2 is sched-

uled for delivery at a later time than m1 then a causal-

ity violation is inevitable. Hence, we propose our second

algorithm that checks the queue to determine causally

related messages. Specifically, whenever message m1 is

about to delivered at process j, j checks the message

queue to determine if there is any message m2 such that

less(〈r.m2, c.m2, kn.m2〉, 〈r.m1, c.m1, kn.m1〉) is true. If

there exists such a message m2 then j sets the delivery

time of m1 as delcond(m1, j) = delcond(m2, j). If there

are no such message then m1 is delivered based on the

DAPW algorithm.

5. Simulation Model

Our simulation model consists of n ordinary processes

and one special process (observer). The ordinary pro-

cesses communicate with each other. Every message sent

by an ordinary process is also sent to the observer. Now,

we show how our simulation model ensures system prop-

erties stated in Section 2.

Ensuring G1. At each step of the simulation, one

process is selected at random based on a uniform distri-

bution of n + 1 processes (i.e., n ordinary process and a

special observer process). The selected process (say, j)

can increment its physical clock (rt.j) and send messages

to other processes. The simulation program ensures G1

by selecting another process from the uniform distribution

if incrementing rt.j leads to violation of G1.

Ensuring G2. Whenever a process sends a message,

the destination receives the message within x, 0 ≤ x ≤ δ,

unit(s) of time, thereby ensuring G2. Message delay is

determined using a normal distribution N(µ, σ), where

µ is the mean delay and σ is the standard deviation of

the delay. In our simulations, we use N(δ
2
, δ

4
) (approxi-

mately 95% messages are received in [0 . . . δ]) and N(δ
4
, δ

8
)

(approximately 95% messages are received in [0 . . . δ
2
]) for

message delay. If the random delay from the distribution

is greater than δ, we treat it as a lost message. Since the

message delay cannot be less than 0 in a real system, if

the random delay from the distribution is less than 0, we

choose another random delay from the same distribution.

After the system properties are met, the selected pro-

cess can increment its physical clock and send messages

to other processes.

Implementing message rate. Whenever a process

(say, j) increments its physical clock, it sends a message

to other processes with certain probability. We implement

this using message rate. Process j chooses a random

number between 1 and 1/message rate. If the random

number is 1, j can sends a message to another process.

Also, whenever a process sends a message to another pro-

cess, it sends a copy of the message to the observer.

6. Simulation Results

For our simulation, we developed an event simulation

program in Java. The program takes number of ordinary

processes, ε, δ, message rate, the mean of message delay,

the standard deviation of message delay and the type of

algorithm as input. We conducted experiments for δ=10

with the following values of ε: 5, 10, 20, and 30. Similarly,

we conducted experiments for ε = 10 with the following

values of δ: 5, 10, 20, and 30. Note that, we have not

associated a unit for ε and δ. If ε = 5 and δ = 10, it can

be used to represent a system where the maximum clock

drift is 5ms (10ms) and message delay is 10ms (20ms),

etc. Further, we find that the ratio ε
δ

is important than

the individual parameters.

For these values of ε and δ, we use the following values

for message rate: 0.5, 0.1, and 0.01. Likewise, we use the

38 T.SICE Vol.E-S-1 No.1 2006

following values for c: 100%, 80%, 60%, 40%, 20%, and

0%. For each input, we perform at least 3 experiments to

compute the causality violations. The results presented

here are average of these experiments. For a given value

of the input parameters, the percentage of causality vio-

lations in different experiments are similar.

In these experiments, we compute the number of causal-

ity violations at the observer as follows: For each m1, we

compute the number of messages delivered before m1 (say,

m2) such that send(m1) −→ send(m2) is true. We say

that these messages violate backward causality. Likewise,

for each m1, we computer the number of messages deliv-

ered after m1 (say, m2) such that send(m2) −→ send(m1)

is true. We say that these messages violate forward

causality. The number of causality violations is obtained

by taking the average of messages that violate back-

ward/forward causality.

To compute these causality violations, for each

event/message, we also maintain vector timestamps [15,

16] in addition to the logical timestamps from Section 3.

These vector timestamps identify the actual causal rela-

tion among events in the system. They are not used in

any way to determine when messages are delivered.

The rest of the section is organized as follows. In Sec-

tion 6. 1, we study of effect of changing ε on causal delivery

of messages. Then, in Section 6. 2, we study the effect of

varying δ on causal delivery of messages. Subsequently,

in Section 6. 3, we present the effect of message rate on

causal delivery. In Section 6. 4, we present the effect of

number of processes in the system on causal delivery. Fi-

nally, in Section 6. 5, we present the effect of using partial

timestamps and show that the application can choose the

size of the timestamp depending on the level of causality

violations it can tolerate.

6. 1 Effect of Maximum Clock Drift

The effect of ε on causal delivery of messages using

DAPW and CBD is shown in Figure 2. The graphs show

the number of causality violations as a function of the per-

centage of delay, c, used in delcond. In these experiments,

we use δ = 10 and message rate = 0.1. The simulation

consists of 10 ordinary processes and the special observer

process.

DAPW. When the ratio ε
δ

is larger, the number of

causally dependent messages for a given message m is

large. Thus, for larger values of ε
δ
, there is a higher prob-

ability that one or more of these messages are delivered

before m. Hence, as ε
δ

increases, the number of causality

violations increase (cf. Figures 2 (a) and 2 (c)).

When message delay is determined from the distribu-

tion N(δ
4
, δ

8
), 95% of the messages are received within δ

2
.

By contrast, when message delay is determined from the

distribution N(δ
2
, δ

4
), 95% of the messages are received

in δ. Thus for N(δ
4
, δ

8
), the number of messages that

causally depend on a given message is more than that for

N(δ
2
, δ

4
). Hence, the probability of causality violations is

more when the distribution N(δ
2
, δ

4
) is used for message

delay (cf. Figures 2 (a) and 2 (c)).

For small values of ε
δ
, there exists a threshold T such

that, the causality violations increase suddenly when c<

T . For example, in Figure 2 (a), for ε=5, there is a sud-

den rise in causality violations for c<40%. The number of

causally related messages is less when the ratio ε
δ

is small.

When T ≤ c< 100%, the delay in delivery captures most

of the causal relation among messages. When this delay

is reduced (i.e., c > T), the messages are delivered faster

and, hence, the causal relation among messages is not

captured. For larger values of ε
δ
, more causally related

messages are present for a message m. Hence, the ob-

server captures most causally related messages even when

the delay in delivery is less.

CBD. From Figures 2 (b) and 2 (d), we observe that

as ε
δ

ratio increases, the number of causality violations

decrease. This result is exactly opposite to DAPW. In

CBD, before delivering a message m1, the message queue

is checked to determine if there is any message, say m2

such that m1 causally depends on m2. If there is such

a message, CBD postpones the delivery of m1. Thus, as
ε
δ

ratio increases, CBD can detect/prevent most of the

causality violations since there is higher probability that

the message queue contains one or more causally related

messages.

Contrary to the observation for DAPW, we note that

the number of causality violations is less when CBD is

used with message delay of N(δ
4
, δ

8
). This is due to the

fact that there are more causally related messages for a

given message m, and there is a high probability that at

least one of them will be present in the message queue of

the observer when m is about to be delivered.

Comparison. From Figure 2, we conclude that the

number of causality violations in CBD are an order of

magnitude less than that in DAPW. For small values of
ε
δ
, CBD performs almost similar to DAPW. When ε

δ
is

small, the number of causally related messages for any

message is less. Therefore, CBD has limited or no infor-

mation in the message queue to detect/prevent causality

violations, as opposed to the case where the ratio ε
δ

is

large. Thus, for small values of ε
δ
, it may be better to

use DAPW and save the overhead of checking the queue

T. SICE Vol.E-S-1 No.1 January 2006 39

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

(a) (b) (c) (d)

Fig. 2 Effect of ε on causal delivery using (a) DAPW with message delay N(δ
2
, δ
4
), (b) CBD with message delay N(δ

2
, δ
4
),

(c) DAPW with message delay N(δ
4
, δ
8
), and (d) CBD with message delay N(δ

4
, δ
8
). (Note that, the scale of DAPW

and CBD graphs are different.)

as one in CBD. Also, we note that the processing over-

head with DAPW is significantly lower than that of CBD.

Hence, for small values of ε
δ
, we recommend DAPW. As

the ratio ε
δ

increases, we prefer CBD, since the small addi-

tion in processing overhead reduces the number of causal-

ity violations considerably. (We observe similar results in

Sections 6. 2 and 6. 3.)

6. 2 Effect of Maximum Message Delay

The effect of δ on causal delivery of messages using

DAPW and CBD is shown in Figure 3. The graphs show

the number of causality violations as a function of percent-

age of delay, c, used in delcond. In these experiments,

we use ε = 10 and message rate = 0.1. The simulation

consists of 10 ordinary processes and the special observer

process.

DAPW. From Figures 3 (a) and 3 (c), we observe that

as ε
δ

increases, the number of causality violations increase.

These results are similar to that in Section 6. 1.

Further, in Figure 3 (c), we observe that the number

of causality violations is more when DAPW is used with

message delay of N(δ
4
, δ

8
). Once again, these results are

similar to that in Section 6. 1.

As mentioned in Section 6. 1, for small values of ε
δ
, there

exists a threshold T such that causality violations increase

suddenly when c < T . For example, in Figure 3 (a), for

δ = 20 (respectively, δ = 30), there is a sudden rise in

causality violations when c<60% (respectively, c<40%).

CBD. From Figures 3 (b) and 3 (d), we observe that as
ε
δ

increases, the number of causality violations decrease.

Once again, this is exactly opposite to DAPW.

6. 3 Effect of Message Rate

The effect of message rate on causal delivery of mes-

sages using DAPW and CBD is shown in Figure 4. The

graphs show the number of causality violations as a func-

tion of percentage of delay used in delcond. In these ex-

periments, we use ε = δ = 10. The simulation consists of

10 ordinary processes and the special observer process.

As the message rate increases, more causally depen-

dent messages for a message m are present in the system.

Thus, the probability of causality violations is higher.

Further, the number of causality violations in CBD is sig-

nificantly less than that in DAPW.

When δ is an overestimate of message delay (i.e., mes-

sage delay of N(δ
4
, δ

8
)), the number of causality violations

in CBD is in the order of 0% − 2% (cf. Figure 4 (d)).

This is due to the fact most messages arrive within δ
2
,

and, hence, CBD has more information present in the

message queue to detect/prevent causality violations be-

fore delivering a message.

Further, for small values of message rate, causality vi-

olations in DAPW and CBD are nearly equal. This is

due to the fact that at low message rates, CBD has very

limited information to exploit the messages in the queue.

Further, as CBD incurs an additional overhead of pro-

cessing the message queue, we expect that DAPW will be

preferred for small values of message rate.

6. 4 Effect of Number of Processes

The effect of number of processes on causal delivery of

messages using DAPW and CBD is shown in Figure 5.

The results are for ε = δ = 10 and message rate = 0.1.

We use the following values for the number of ordinary

processes: 5, 10 and 50.

As the number of processes increases, more causally

dependent messages for a message m are present in the

system. Thus, the probability of causality violations is

higher.

Furthermore, when δ is an overestimate of message de-

lay (i.e., message delay of N(δ
4
, δ

8
)), the number of causal-

ity violations in CBD is in the range of 0%− 3% (cf. Fig-

ure 5 (d)). Since most messages arrive within δ
2
, CBD

detects/prevents most of the causality violations.

6. 5 Physical Clocks Vs. Partial Timestamps

In this section, we argue that the information main-

tained in CBD, although small, is important in reducing

the number of causality violations. Towards this end, we

compute the causality violations for the case where only

40 T.SICE Vol.E-S-1 No.1 2006

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

(a) (b) (c) (d)

Fig. 3 Effect of δ on causal delivery using (a) DAPW with message delay N(δ
2
, δ
4
), (b) CBD with message delay N(δ

2
, δ
4
),

(c) DAPW with message delay N(δ
4
, δ
8
), and (d) CBD with message delay N(δ

4
, δ
8
). (Note that, the scale of DAPW

and CBD graphs are different.)

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

(a) (b) (c) (d)

Fig. 4 Effect of message rate on causal delivery using (a) DAPW with message delay N(δ
2
, δ
4
), (b) CBD with message

delay N(δ
2
, δ
4
), (c) DAPW with message delay N(δ

4
, δ

8
), and (d) CBD with message delay N(δ

4
, δ
8
). (Note that,

the scale of DAPW and CBD graphs are different.)

0

10

20

30

40

50

60

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

of processes = 5
of processes = 10
of processes = 50

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

of processes = 5
of processes = 10
of processes = 50

0

10

20

30

40

50

60

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

of processes = 5
of processes = 10
of processes = 50

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

of processes = 5
of processes = 10
of processes = 50

(a) (b) (c) (d)

Fig. 5 Effect of number of ordinary processes on causal delivery using (a) DAPW with message delay N(δ
2
, δ
4
), (b)

CBD with message delay N(δ
2
, δ

4
), (c) DAPW with message delay N(δ

4
, δ

8
), and (d) CBD with message delay

N(δ
4
, δ
8
). (Note that, the scale of DAPW and CBD graphs are different.)

physical clock is used to determine when a message should

be delivered. To obtain an implementation that uses phys-

ical clock alone, we set the c value and all elements in kn

to 0. We call this algorithm DPC1. We also consider the

algorithm DPC2 where the c value is used but kn values

are reset to 0. Other points on this continuum can be

obtained by maintaining a subset of the kn values in the

timestamp.

Notation. In this section, by “2 kn.e elements” we mean

that the simulation uses kn.ej [c.ej] and kn.ej [c.ej−1] ele-

ments instead of the kn.ej array for an event ej . Similarly,

by “k kn.e elements” we mean that the simulation uses

the first k kn.e elements.

Figure 6 shows the simulation results for ε = δ = 10,

message rate=0.1 and 10 processes. (Figure 7 shows the

results for 50 processes.)

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

DPC1
DPC2

2 kn.e elements
4 kn.e elements
6 kn.e elements

CBD

0

20

40

60

80

100

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

DPC1
DPC2

2 kn.e elements
4 kn.e elements
6 kn.e elements

CBD

(a) (b)

Fig. 6 Effect of using partial timestamps with 10 processes on (a)

CBD with delay N(δ
2
, δ

4
), (b) CBD with delay N(δ

4
, δ
8
).

From Figure 6, we observe that using physical clocks

alone for causal delivery of messages is not enough. Specif-

ically, even when c=100%, DPC1 and DPC2 have around

30%−50% of causality violations. And, maintaining just 2

kn.e elements provides a significant reduction in number

of causality violations (10−15%). Moreover, if we increase

the number of kn.e elements in the timestamp, the causal-

T. SICE Vol.E-S-1 No.1 January 2006 41

0

20

40

60

80

100

120

140

160

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

DPC1
DPC2

2 kn.e elements
4 kn.e elements
6 kn.e elements

CBD

0

20

40

60

80

100

120

140

160

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

DPC1
DPC2

2 kn.e elements
4 kn.e elements
6 kn.e elements

CBD

(a) (b)

Fig. 7 Effect of using partial timestamps with 50 processes on (a)

CBD with delay N(δ
2
, δ

4
), (b) CBD with delay N(δ

4
, δ
8
).

ity violations can be further reduced. Maintaining just 6

kn.e elements gives the same result as CBD. Thus, the

timestamp provides a continuum in which the application

developer can choose the size of the timestamps based on

the requirements. This result is especially important in

sensor networks. Specifically, in MICA motes [1], the pay-

load size is just 29 bytes. Hence, the overhead in achieving

approximate causal delivery should be small. Depend-

ing on the percentage of causality violations processes

can handle and the overhead involved, the developer can

choose an appropriate size for the timestamp. For exam-

ple, choosing 2 kn.e elements (i.e., 4 bytes including rt.j

and c.j) will result in 10 − 15% causality violations (as

opposed to 30 − 50% causality violations when using the

physical clocks alone). Thus, small additional informa-

tion maintained in the timestamp plays a significant role

in reducing the number of causality violations.

7. Conclusion and Future Work

In this paper, we presented a solution for approximate

causal delivery. We discussed the effect of the parame-

ters such as maximum clock drift, maximum message de-

lay, and message rate on causal delivery of messages. We

showed that by using physical clocks alone, the number of

causality violations increase significantly. By adding new

variables to the timestamp, the number of causality vio-

lations can be reduced. In other words, we showed that

our solution provides a continuum such that the appli-

cation developer can choose the size of timestamps used

in the system based on the number of causality viola-

tions the application can tolerate. This result is especially

useful in sensor networks, since the sensors are resource

constrained and the size of the payload in a message is

very limited (e.g., 29 bytes in MICA). From Section 6. 5,

we note that maintaining just 2 kn.e elements (i.e., 4

bytes) provides a significant reduction in causality viola-

tions (10 − 15%) compared to using physical clocks alone

(30−50%). Hence, causal delivery of messages at the base

station can be achieved easily in sensor networks with a

small message overhead. To our knowledge, this result

is the first of its kind for providing approximate causal

delivery in sensor networks. Moreover, DAPW and CBD

preserve the self-stabilization [14] property of the algo-

rithm in [12], i.e., starting from arbitrary initial states,

the system recovers to states from where causal delivery

is achieved. Hence, if the sensors are corrupted, our algo-

rithm ensures that eventually approximate causal delivery

is restored.

There are several possible extensions to this work. We

are currently investigating the performance of our ap-

proach with trace data from experiments such as [17].

This allows us to study the effect of causality violations

on large scale sensor network applications. Further, it al-

lows the application developer to choose the size of the

timestamps and the delivery time of a message. Another

interesting extension to this work is to study of the effect

of buffering time at the intermediate sensors.

Acknowledgments. This work was partially spon-

sored by NSF CAREER CCR-0092724, DARPA Grant

OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF

Equipment Grant EIA-0130724, and a grant from Michi-

gan State University.

References

1) J. Hill and D. E. Culler. Mica: A wirleess platform for

deeply embedded networks. IEEE Micro, 22(6):12–24,

2002.

2) M. Demirbas, A. Arora, and M. G. Gouda. A pursuer-

evader game for sensor networks. In Proceedings of

the Sixth Symposium on Self-Stabilizing Systems (SSS),

Springer, LNCS: 2704:1–16, June 2003.

3) M. J. Fischer, N. A. Lynch, and M. S. Peterson. Impos-

sibility of distributed consensus with one faulty processor.

Journal of the ACM, 32(2):374–382, 1985.

4) J. M. Couvreur, N. Francez, and M. G. Gouda. Asyn-

chronous unison. In Proceedings of the 12th International

Conference on Distributed Computing Systems, pages 486–

493, 1992.

5) A. Arora, S. Dolev, and M. G. Gouda. Maintaining digital

clocks in step. Parallel Processing Letters, 1:11–18, 1991.

6) T. Herman. NestArch: Prototype time synchronization

service. NEST Challenge Architecture, January 2003.

7) F. Cristian and C. Fetzer. The timed asynchronous dis-

tributed system model. IEEE Transactions on Parallel

and Distributed Systems, 10(6):642–657, 1999.

8) M. Singhal and N. Shivaratri. Advanced Concepts in Oper-

ating Systems: Distributed, Database, and Multiprocessor

Operating Systems. McGraw-Hill Publishing Company,

New York, 1994.

9) R. Baldoni, M. Mostefaoui, and M. Raynal. Causal de-

liveries in unreliable networks with real-time delivery con-

straints. Journal of Real-Time Systems, 10(3):1–18, 1996.

10) F. Adelstein and M. Singhal. Real-time causal message

ordering in multimedia systems. International Conference

on Distributed Computing Systems, pages 36–43, 1995.

11) K. Römer. Temporal message ordering in wireless sen-

42 T.SICE Vol.E-S-1 No.1 2006

sor networks. In Proceedings of the Second Mediterranean

Workshop on Ad-Hoc Networks (MED-HOC NET), June

2003.

12) S. S. Kulkarni and Ravikant. Stabilizing causal deter-

ministic merge. In Proceedings of the Fifth Interna-

tional Workshop on Self-Stabilizing Systems, Springer,

LNCS:2194:183–199, October 2001.

13) L. Lamport. Time, clocks, and the ordering of events

in a disributed system. Communications of the ACM,

21(7):558–565, July 1978.

14) E. W. Dijkstra. Self-stabilizing systems in spite of dis-

tributed control. Communications of the ACM, 17(11),

1974.

15) J. Fidge. Timestamps in message-passing systems that

preserve the partial ordering. Proceedings of the 11th Aus-

tralian Computer Science Conference, 10(1):56–66, Feb

1988.

16) F. Mattern. Virtual time and global states of distributed

systems. Parallel and Distributed Algorithms, pages 215–

226, 1989.

17) A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang,

V. Naik, V. Mittal, H. Cao, M. Demirbas, M. Gouda,

Y-R. Choi, T. Herman, S. S. Kulkarni, U. Arumugam,

M. Nesterenko, A. Vora, and M. Miyashita. A line in the

sand: A wireless sensor network for target detection, clas-

sification, and tracking. Computer Networks (Elsevier),

46(5):605–634, December 2004.

Sandeep S.KULKARNI

kulkarni.jpg

Sandeep Kulkarni received his B.Tech. in

Computer Science and Engineering from In-

dian Institute of Technology, Mumbai, India in

1993. He received his MS and Ph.D. degrees

in Computer and Information Science from

Ohio State University, Columbus, Ohio, USA

in 1994 and 1999 respectively. He has been

working as an assistant professor in Michigan

State University, East Lansing, USA since Au-

gust 1999. He is a member of the Software En-

gineering and Network Systems (SENS) Labo-

ratory. He is a recipient of the NSF CAREER

award. His research interests include fault-

tolerance, distributed systems, group commu-

nication, security, self-stabilization, composi-

tional design and automated synthesis. Con-

tact him at sandeep@cse.msu.edu.

Mahesh ARUMUGAM

arumugam.jpg

Mahesh Arumugam received his B.E. degree

in Computer Science and Engineering from

College of Engineering, Guindy, Anna Univer-

sity in May 2001. In September 2003, he re-

ceived his M.S. degree from Michigan State

University, East Lansing, where he is cur-

rently a Ph.D. student. He is a member of

the Software Engineering and Network Sys-

tems (SENS) Laboratory. His research in-

terests include middleware services, program

transformations, self-stabilization, and sensor

networks. He is a student member of the IEEE

and a member of the IEEE Computer Society.

Contact him at arumugam@cse.msu.edu.

Reprinted from Trans. of the SICE

Vol. E-S-1 No. 1 33/42 2006

