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Approximate Causal Observer!
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In this paper, we focus on the problem of approximate causal delivery. This problem identifies the tradeoff
between causal delivery and timely delivery of messages. Causal delivery requires that delivery of a message, say
m, be delayed until all messages on whom m is causally dependent are delivered. By contrast, timely delivery
requires that messages be delivered as soon as possible. In the context where messages could be lost and the
value of messages decreases as the delay increases, the requirements of causal delivery and timely delivery are
conflicting.

We show how a simple logical timestamp program can be used to obtain a solution for approximate causal
observer. This solution is intended for systems that provide simple guarantees about the clock drift and about
maximum delay of messages that are not lost. While O(n?) unbounded integers are required to implement perfect
causal delivery, our solution uses only O(log n) bounded space. Our solution permits a process to tradeoff between
causal delivery and timely delivery, i.e., it allows the process to choose the level of causality violations it can
tolerate (0% or more) and the time for which it will have to buffer the received messages. We also show that
the information maintained by our program, although small, is important to provide such a tradeoff; we show
that the number of causality violations increase by an order of magnitude if this information is not maintained.
Finally, we show how our solution can be used to observe computations in sensor networks while providing a
continuum where one can choose the size of the timestamps based on the acceptable level of causality violations.
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1. Introduction

The ability to observe distributed computations is one
of the important problems in many systems. Such a prob-
lem arises in several contexts. For example, consider an
application in sensor networks (e.g., MICA motes [1])
where a group of sensors need to track a moving object
(c.g., [2]).
their observations about the object they are tracking with

In such a system, the sensors communicate

each other. However, due to limited memory/computing
power and small size, a sensor cannot provide human read-
able output. Hence, these applications typically include
a more powerful visualization unit (e.g., a PC) that is
responsible for providing the required human readable
output. Thus, the visualization unit observes the com-
munication among sensors and uses its high computing
power/memory to display/interpret the communication
among sensors.

Other applications of such observer occur in debugging
of distributed programs. In these applications, the debug-

ger observes the communication among processes to study
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the behavior of the underlying program, and to identify
potential violations of specifications. Yet another appli-
cation includes monitoring distributed programs. Again,
in such an application, the monitor receives the copies of
(relevant) messages that are sent by the underlying pro-
cesses. The monitor uses these messages to examine the
behavior of the underlying program.

Since the order in which the observer receives messages
may be different from the order in which the communi-
cation occurred in the underlying system, the observer
needs to reorder messages consistently. While it may be
impossible to recreate the exact scenario that occurred in
the underlying system, it is desirable to obtain at least a
consistent view at the observer. One way to obtain such
consistent view is to ensure that the observer delivers the
messages in a causal order.

One additional requirement for online observers is that
they should be timely, i.e., the observer needs to recon-
struct the underlying computation quickly. As an illustra-
tion, in the sensor network example given above, the visu-
alization of the underlying computation should be in real-
time and, hence, the visualization unit must act quickly on
the messages received so that the visualization does not
significantly lag behind the original computation. Like-

wise, if monitoring is used to identify potential errors in
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the system computation then the monitor needs to iden-
tify the potential errors quickly.

It is easy to observe that there is a potential conflict
between achieving causal delivery and delivering mes-
sages quickly. Causal delivery requires that a message be
buffered until all messages that causally depend on it are
delivered. However, timely delivery requires that a mes-
sage be delivered as soon as possible. Since these goals are
contradicting, it is necessary to develop protocols where
the observer can choose the level of causality violations
it can accept to ensure timely delivery of messages. In
other words, if the observer introduces additional delays
during delivery of messages then the number of causality
violations should be reduced. We call this the problem of
approzimate causal delivery. And, an observer that pro-
vides approximate causal delivery is called approxzimate
causal observer.

Clearly, based on the result in [3], one cannot design so-
lutions for such approximate causal delivery in pure asyn-
chronous systems where process speeds, process clocks
and message delays are arbitrary. In other words, the un-
derlying system must provide some simple guarantees that
enable the observer to obtain the tradeoff between causal
delivery and timely delivery. We focus on two simple guar-
antees from the underlying system: The first guarantee is
related to the clocks; we require that the system provide
a bound, say ¢, such that the clock drift between different
processes (underlying processes as well as the observer) in
the system is bounded by €. This guarantee can be met by
using GPS clocks, network time protocol, atomic clocks
or clock synchronization programs (e.g., [4-6]). The sec-
ond guarantee relates to the message delays; we require
that messages that reach their destination do so within
some bound, say §. This guarantee can be met by using
protocols that characterize messages as being timely or
late (e.g., [7]).

One can use solutions such as matrix clocks [8] to solve
the problem of approximate causal delivery. However,
this approach suffers from four problems; for one, ma-
trix clocks do not use the underlying physical clock and,
hence, cannot easily handle timely delivery. For two, the
protocol in [8] cannot handle lost messages; all subsequent
messages that causally depend on the lost message be-
come undeliverable. Thirdly, the size of the timestamp
used in [8] is O(n?) where n is the number of processes
in the system. Such a large size could be especially prob-
lematic in systems where the number of processes is large.
Finally, in [8], as the computation proceeds, the size of

the timestamps grows without a bound. While solutions

in [9,10] deal with the first two problems, these solutions
still suffer from the overhead of timestamps whose size
is quadratic in the number of processes and whose size
grows unbounded as the computation proceeds.

Another related work on causal delivery in sensor net-
works is [11] where a temporal message ordering service is
proposed. In this approach, the senor network is modified
to achieve temporal message ordering at base station. To-
wards this end, they send each message by multiple routes,
one or more short and one or more long. By contrast, in
our work, we do not assume such multiple messages. In
fact, we do not modify the underlying communication in
the sensor network. The reordering is done only at the
base station. It follows that our approach allows one to
make use of any optimizations that can be performed in
the routing layer.

With this motivation, in this paper, we focus on adapt-
ing the algorithm in [12] to obtain approximate causal
delivery. This algorithm has several helpful features; for
one, the size of the timestamps is bounded, i.e., it does
not grow as the computation proceeds. Also, the size of
the timestamps is proportional to the system guarantees,
i.e., if the system guarantees are improved then the size
of the timestamps is reduced. Moreover, the size of the
timestamps is O(e logn + log §) where n is the number
of processes in the system.
Contributions of the paper. In this paper, we
present two algorithms for approximate delivery. The
first algorithm is based on delivering the messages ear-
lier than that prescribed by the algorithm in [12]. Based
on the ability to tolerate causality violations, this algo-
rithm allows the observer to reduce the delivery time of
messages. We also show that a simple modification to the
first algorithm, checking messages that the observer has
received to determine if they might violate the require-
ments of causal delivery, allows us to reduce the number
of causality violations further. Also, we study the effect of
changing various parameters (clock drift, message delay,
and message rate) on approximate causal delivery.

We also show that even though the timestamps used in
these algorithms do not have all the information necessary
for detecting causality violations, the information main-
tained by the algorithms is highly valuable in reducing the
number of causality violations. To illustrate this, we show
that if only physical clock is used to obtain causal deliv-
ery then the number of causality violations increase sig-
nificantly. Thus, small additional information maintained
by the algorithm plays an important role in reducing the

number of causality violations.
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Finally, we show that the timestamp provides a contin-
uum, i.e., the application developer can choose the size of
timestamp by considering the number of causality viola-
tions and message delay the application can handle. In
other words, if the overhead of the timestamps is too large,
the developer can reduce the size of the timestamp at the
cost of increased causality violations and/or increased de-
lay.

Organization of the paper. The rest of the paper
is organized as follows. In Section 2, we present our sys-
tem model. Then, in Section 3, we present the algorithm
for causal delivery in [12] and recall its relevant proper-
ties. In Section 4, we present our approaches for approxi-
mate causal delivery. In Section 5, we state our simulation
model. And, in Section 6, we show the effect of various pa-
rameters on approximate causal delivery of messages and
also show that the application can choose the size of the
timestamp depending on the level of causality violations
it can tolerate. Finally, in Section 7, we make concluding

remarks and discuss future work.

2. System Model

A distributed system consists of finite set of processes
which communicate via message passing. For simplicity,
we do not distinguish between the processes and the pro-
cessors they run on. Each process j has a physical clock
rt.j.

As discussed in Introduction, in the absence of faults, a
distributed system must provide some guarantees that will
enable the observer to obtain a tradeoff between causal
delivery and timely delivery. In the presence of faults,
these guarantees may be violated temporarily. We focus
on the following two guarantees about the bound on max-
imum clock drift (for example, using [6]) among different

processes (sensors) and the bound on message delay.

Guarantees of the distributed system.

G1. The value of rt.j is non-decreasing, and at any
time, the difference between the clock values of any two
processes is bounded by e. In other words,

Vi, k:|rt.j —rt.k|<e
G2. Let m; be a message sent by process j to k. Also,
let sty, denote the clock value of j when j sent m;, and
let rd» denote the clock value of j when k received m;.
We require that k should receive m; within time ¢ unless
m; is lost. In other words,

((rdm < (stm+9)) V rdm=00)

Notation. A distributed system instantiated with pa-
rameters € and § is denoted as ds(e, ).

Execution of a process consists of a sequence of events;
an event can be a local event, a send event, or a receive

event. In a local event, a process neither receives nor

sends a message. In a send event, a process sends one or
more messages, and in a receive event, a process receives
one or more messages. For simplicity, we assume that one
clock tick of j corresponds to at most one event at process
7. Note that, we can weaken this assumption so that one
clock tick corresponds to at most K events, where K is
any constant.

We assume that there is a special observer process in
the system. A copy of relevant messages sent by any pro-
cess is also sent to the observer. The observer buffers the
messages and delivers them in such a way that the number
of causality violations is acceptable. Note that we do not
assume that the observer can precisely determine causal
relations between two messages.

Notation.  In this paper, we use i, j,k and [ to denote
processes. We use e, f and g to denote events. Where
needed, events are subscripted with the process at which
they occur, thus, e; is an event at j. We use m to denote
messages. Messages are subscripted with the process that

sends the message. Thus, m; is a message sent by j.

3. Logical Timestamps and Causal De-
livery

In this section, we present the algorithm for logical
timestamp (Section 3. 1) and causal delivery (Section 3. 2)
from [12]. We use the causal delivery algorithm in Section
3.2 for achieving approximate causal delivery.

3.1 Logical Timestamp

Before presenting the program, we define the notion of
happened-before, — among events.

Happened-before. The happened-before relation [13]
is the smallest transitive relation that satisfies, for any
events e, f, e — [ if (1) e and f are events on the same
process and e occurred before f, or (2) e is a send event
in one process and f is the corresponding receive event in
another process. O
Solution to logical timestamp. In the solution to
the logical timestamps proposed in [12], the timestamp of
an event e; at process j is of the form (rt.ej, c.ej, kn.ej),
where rt.e; denotes the physical clock value of j when
e; was created. The variable c.e; denotes the difference
between the knowledge 7 had about the maximum clock
value in the system and the physical clock value of j.
The variable kn.e; is an array of size 2e. The variable
kn.ej[t], —e < t < ¢, captures the knowledge about the
number of events f such that r.f =r.e; +¢ and f — e.

Each process j in the system maintains rt.j, .7, c.j and

kn.j. (The algorithm works correctly even if j maintains

(rt.7 mod B) instead of rt.j, where B > e+d§+1. Thus,
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the space required for maintaining r¢.5 is bounded.) The
variable rt.j represents the physical clock value at j and
(r.j,c.j, kn.j) represents the timestamp of the last event
at j. The initial and update rules for different events are
presented in Figure 1. Note that, for simplicity of presen-

tation, we assume kn.j[t] =0if ¢t < —e or t > e.

Initially:
rt.j,r.3,c.j =0,
Vt:t#0:kn.j[t]=0,kn.j0]=1

Local event ¢; or
Send event e; (message being sent is m;)
c.j :=maz(0,r.j+ c.j—rt.j)
Vt:—e <t<e:knjlt]:=knjt+rt.y —rj]
kn.j[0] := kn.5[0] + 1
r.j:=rt.j
r.ej,c.ej, kn.ej :=r.j,c.j,kn.j
if e; is a send event then
r.mgj, c.mj, kn.m; :=r.j,c.j, kn.j

Receive event e; (message m received
with timestamp (r.m, c.m, kn.m))
c.j :=maz(0,r.j+ c.j —rt.j,r.m+cm —rt.j)
Vit:—e<t<e:knjft]:=
maz(0, kn.j[t + rt.j — r.j], kn.m[t + rt.j — r.m])
kn.j[0] := kn.5[0] + 1
r.j:=rt.j
r.ej,c.ej, kn.ej :=r.j,c.j,kn.j

Fig.1 Logical timestamp program
Comparing timestamps.  Let (r.e;,c.ej, kn.e;) and
(r.fx,c.fr, kn.fr) be two timestamps. The less function

for comparing timestamps based on the logical timestamp

program in Figure 1 is as follows:

less((r.e,; c.ej, kn.ej), (1. fr, c.fr, kn. fr))
iff
(r.ej + c.ej,kn.ej[c.e;], kn.ejlc.e; — 1], ...,
kn.ejlc.e; — e+ 1], 7)
< // lexicographic comparison
(r.fi + c. fr,kn.file. fu], kn. fele. fs — 1], ...,
kn.fele.fu — e+ 1], k)

In the above comparison, kn values are compared only

when r.e 4+ c.e equals r.f + c.f. Thus, kn.f[c.f] is com-
pared with kn.e[r.f +c.f —r.e](= kn.e[c.e]). Since kn.f[t]
denotes the knowledge about events at r.f + ¢, the com-
parison of kn values allows us to determine if fi, was aware
of more events than e;.
Properties of the logical timestamp program.
The logical timestamp program presented above has the
following properties. (We refer the reader to [12] for
proof.)

eVe, fue— f
= less((r.e,c.e,kn.e), (r.f,c.f, kn.f)).

e The value of c.e is less than € and the value of each

element in kn.e is less than n, where n is the number

of processes in the system. Hence, the space needed by

the timestamp is O(e log n + log 0). Further, it does

not grow as the computation proceeds.

3.2 Causal Delivery Program

The causal delivery program proposed in [12] is as
follows: Whenever a process j receives a message m,
j buffers the message until delcond(m,j) = (rt.j =
rm + c¢m + § + ¢€) is satisfied.

delcond(m, j) is satisfied, the message is delivered. If

As soon as the

two or more messages satisfy the delivery condition si-
multaneously then process j determines the causal rela-
tion among the messages and delivers them accordingly.
If m; and my satisfy the delivery condition simultane-
ously and less({r.mj,c.mj, kn.m;), (r.my, cmg, kn.ms))
is true, then m; is delivered before my.
Properties of the causal delivery program. The
causal delivery program presented above has the following
properties (cf. [12]).
e If process j sends a message m when its physical clock
value was r.m then the message would be delivered be-
fore the physical clock value of j reaches r.m + 6 + 3e.
o If two messages m1 and mg such that send(mi) —
send(mz) arrive at any process j then m; is delivered
before ms.
e The causal delivery program is stabilizing fault-
tolerant [14], i.e., starting from an arbitrary state —that
may be reached by temporary violation of system guar-
antees or improper initialization of processes or tran-
sient state corruption of processes or message loss—, it
eventually recovers to states from where its specification

is satisfied.

4. Approaches for Approximate Causal
Delivery

The algorithm presented in Section 3. 2 uses the delivery
condition delcond(m, j) to deliver a message m to process
j. This condition is necessary for correctness, i.e., to en-
sure all messages are delivered in causal order. In other
words, there exists messages for which this condition is
optimal.

In the algorithm in Section 3.2, message m is delivered
at process j when rt.j=r.m+c.m+d+e. Thus, cm+J+e
is the approximate delay in obtaining causal delivery. We
consider the case where messages are delivered before this

delivery condition is satisfied. However, instead of choos-
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ing fixed values for the reduced delay, we let the delay
be proportional to the underlying system guarantees and
any other information that m carries.

In the algorithm in Section 3.2, r.m+c.m captures the
knowledge that the sender of m had about the maximum
clock in the system. Also, € and § depend on the under-
lying system guarantees. Hence, we let the reduced delay
to be a certain percentage of the delay incurred while en-
suring causal delivery. Thus, the actual delay incurred
by messages depends on the underlying system guaran-
tees (€,0) and the knowledge (c.m) that m had ‘about
the future’.

Based on this approach for reducing the delay, we
present two algorithms for approximate causal delivery:
(1) deliver after partial wait and (2) check before deliv-
ery.

Deliver After Partial Wait (DAPW).

algorithm, we wuse the following delivery condition:

In this

delcond(m, j) = (rt.j = r.m + ¢(c.m + 6 + €)), where
0% < ¢ < 100%. Thus, ¢ =0% means that the messages
are delivered to the observer when the clock of observer
is at least r.m, or as soon as the message arrives at the
observer, whichever is later. And, ¢ = 100% means that
the messages are delivered in perfect causal order. Thus,
by using different values for ¢, the application can choose
the delay in delivery.

Check Before Delivery (CBD). In DAPW, when-
ever a message, say mi is about to be delivered to pro-
cess j, if there is a casually related message ms such
that send(ms2) — send(m1) is true and mg is sched-
uled for delivery at a later time than m; then a causal-
ity violation is inevitable. Hence, we propose our second
algorithm that checks the queue to determine causally
related messages. Specifically, whenever message m; is
about to delivered at process j, j checks the message
queue to determine if there is any message ms such that
less((r.ma, c.oma, kn.mz), (r.my, c.omi, kn.my)) is true. If
there exists such a message ms then j sets the delivery
time of m1 as delcond(ma, j) = delcond(maz,j). If there
are no such message then m; is delivered based on the
DAPW algorithm.

5. Simulation Model

Our simulation model consists of n ordinary processes
and one special process (observer). The ordinary pro-
cesses communicate with each other. Every message sent
by an ordinary process is also sent to the observer. Now,
we show how our simulation model ensures system prop-

erties stated in Section 2.

Ensuring G1. At each step of the simulation, one
process is selected at random based on a uniform distri-
bution of n + 1 processes (i.e., n ordinary process and a
special observer process). The selected process (say, j)
can increment its physical clock (rt.j) and send messages
to other processes. The simulation program ensures G1
by selecting another process from the uniform distribution
if incrementing rt.j leads to violation of G1.

Ensuring G2. Whenever a process sends a message,
the destination receives the message within z,0 < z < 4,
unit(s) of time, thereby ensuring G2. Message delay is
determined using a normal distribution N(u, o), where
u is the mean delay and o is the standard deviation of

the delay. In our simulations, we use N (%, %) (approxi-
3 é)
18

(approximately 95% messages are received in [0. .. 3]) for

mately 95% messages are received in [0. .. d]) and N(

message delay. If the random delay from the distribution
is greater than 0, we treat it as a lost message. Since the
message delay cannot be less than 0 in a real system, if
the random delay from the distribution is less than 0, we
choose another random delay from the same distribution.
After the system properties are met, the selected pro-
cess can increment its physical clock and send messages
to other processes.
Implementing message rate. Whenever a process
(say, j) increments its physical clock, it sends a message
to other processes with certain probability. We implement
this using message rate. Process j chooses a random
number between 1 and 1/message rate. If the random
number is 1, j can sends a message to another process.
Also, whenever a process sends a message to another pro-

cess, it sends a copy of the message to the observer.
6. Simulation Results

For our simulation, we developed an event simulation
program in Java. The program takes number of ordinary
processes, €, §, message rate, the mean of message delay,
the standard deviation of message delay and the type of
algorithm as input. We conducted experiments for 6 =10
with the following values of e: 5, 10, 20, and 30. Similarly,
we conducted experiments for € = 10 with the following
values of §: 5, 10, 20, and 30. Note that, we have not
associated a unit for € and 6. If e=5 and 6 =10, it can
be used to represent a system where the maximum clock
drift is 5ms (10ms) and message delay is 10ms (20ms),
etc. Further, we find that the ratio ¢ is important than
the individual parameters.

For these values of ¢ and §, we use the following values

for message rate: 0.5, 0.1, and 0.01. Likewise, we use the
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following values for ¢: 100%, 80%, 60%, 40%, 20%, and
0%. For each input, we perform at least 3 experiments to
compute the causality violations. The results presented
here are average of these experiments. For a given value
of the input parameters, the percentage of causality vio-
lations in different experiments are similar.

In these experiments, we compute the number of causal-
ity violations at the observer as follows: For each m1, we
compute the number of messages delivered before m1 (say,
mg) such that send(mi) — send(mz) is true. We say
that these messages violate backward causality. Likewise,
for each m1, we computer the number of messages deliv-
ered after m1 (say, m2) such that send(m2) — send(m1)
is true. We say that these messages violate forward
causality. The number of causality violations is obtained
by taking the average of messages that violate back-
ward /forward causality.

To compute these causality violations, for each
event/message, we also maintain vector timestamps [15,
16] in addition to the logical timestamps from Section 3.
These vector timestamps identify the actual causal rela-
tion among events in the system. They are not used in
any way to determine when messages are delivered.

The rest of the section is organized as follows. In Sec-
tion 6. 1, we study of effect of changing € on causal delivery
of messages. Then, in Section 6.2, we study the effect of
varying ¢ on causal delivery of messages. Subsequently,
in Section 6.3, we present the effect of message rate on
causal delivery. In Section 6.4, we present the effect of
number of processes in the system on causal delivery. Fi-
nally, in Section 6. 5, we present the effect of using partial
timestamps and show that the application can choose the
size of the timestamp depending on the level of causality
violations it can tolerate.

6.1 Effect of Maximum Clock Drift

The effect of € on causal delivery of messages using

DAPW and CBD is shown in Figure 2. The graphs show
the number of causality violations as a function of the per-
centage of delay, ¢, used in delcond. In these experiments,
we use 0 = 10 and message rate = 0.1. The simulation
consists of 10 ordinary processes and the special observer
process.
DAPW. When the ratio 5 is larger, the number of
causally dependent messages for a given message m is
large. Thus, for larger values of %, there is a higher prob-
ability that one or more of these messages are delivered
before m. Hence, as § increases, the number of causality
violations increase (cf. Figures 2 (a) and 2 (c)).

When message delay is determined from the distribu-

tion N (2, %)7 95% of the messages are received within 2.

By contrast, when message delay is determined from the
distribution N(Z,2), 95% of the messages are received
in 6. Thus for N(%7 %)7 the number of messages that
causally depend on a given message is more than that for
N(%7 %). Hence, the probability of causality violations is
more when the distribution N(%7 %
delay (cf. Figures 2 (a) and 2 (c)).

For small values of %, there exists a threshold T such

) is used for message

that, the causality violations increase suddenly when ¢ <
T. For example, in Figure 2 (a), for e=5, there is a sud-

den rise in causality violations for ¢ <40%. The number of

£

5
When T < ¢ < 100%, the delay in delivery captures most

causally related messages is less when the ratio £ is small.
of the causal relation among messages. When this delay
is reduced (i.e., ¢ >T'), the messages are delivered faster
and, hence, the causal relation among messages is not
captured. For larger values of §, more causally related
messages are present for a message m. Hence, the ob-
server captures most causally related messages even when
the delay in delivery is less.

CBD. From Figures 2 (b) and 2 (d), we observe that
as § ratio increases, the number of causality violations
decrease. This result is exactly opposite to DAPW. In
CBD, before delivering a message m1, the message queue
is checked to determine if there is any message, say mo
such that mi causally depends on ms. If there is such
a message, CBD postpones the delivery of mi. Thus, as
£ ratio increases, CBD can detect/prevent most of the
causality violations since there is higher probability that
the message queue contains one or more causally related
messages.

Contrary to the observation for DAPW, we note that
the number of causality violations is less when CBD is
used with message delay of N (2, %). This is due to the
fact that there are more causally related messages for a
given message m, and there is a high probability that at
least one of them will be present in the message queue of
the observer when m is about to be delivered.
Comparison. From Figure 2, we conclude that the
number of causality violations in CBD are an order of
magnitude less than that in DAPW. For small values of
5, CBD performs almost similar to DAPW. When £ is
small, the number of causally related messages for any
message is less. Therefore, CBD has limited or no infor-
mation in the message queue to detect/prevent causality

violations, as opposed to the case where the ratio % is

it may be better to

£

57
use DAPW and save the overhead of checking the queue

large. Thus, for small values of
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Fig.2 Effect of € on causal delivery using (a) DAPW with message delay N (£, 9), (
(c) DAPW with message delay N(%7 %), and (d) CBD with message delay N (

and CBD graphs are different.)

as one in CBD. Also, we note that the processing over-
head with DAPW is significantly lower than that of CBD.
5, we recommend DAPW. As
increases, we prefer CBD, since the small addi-

Hence, for small values of
the ratio £
tion in processing overhead reduces the number of causal-
ity violations considerably. (We observe similar results in
Sections 6.2 and 6. 3.)

6.2 Effect of Maximum Message Delay

The effect of § on causal delivery of messages using
DAPW and CBD is shown in Figure 3. The graphs show
the number of causality violations as a function of percent-
age of delay, ¢, used in delcond. In these experiments,
we use € = 10 and message rate = 0.1. The simulation
consists of 10 ordinary processes and the special observer
process.
DAPW. From Figures 3 (a) and 3 (c), we observe that
as %
These results are similar to that in Section 6. 1.

increases, the number of causality violations increase.

Further, in Figure 3 (c), we observe that the number
of causality violations is more when DAPW is used with
%7 %). Once again, these results are
similar to that in Section 6. 1.

message delay of N(

As mentioned in Section 6. 1, for small values of %, there
exists a threshold 7" such that causality violations increase
suddenly when ¢ < T. For example, in Figure 3 (a), for
0 = 20 (respectively, § = 30), there is a sudden rise in
causality violations when ¢ <60% (respectively, ¢<40%).
CBD. From Figures 3 (b) and 3 (d), we observe that as
5 increases, the number of causality violations decrease.
Once again, this is exactly opposite to DAPW.

6.3 Effect of Message Rate

The effect of message rate on causal delivery of mes-
sages using DAPW and CBD is shown in Figure 4. The
graphs show the number of causality violations as a func-
tion of percentage of delay used in delcond. In these ex-
periments, we use ¢ =3 = 10. The simulation consists of
10 ordinary processes and the special observer process.

As the message rate increases, more causally depen-

) CBD with message delay N(%, %),

88y (1
214
%, %) (Note that, the scale of DAPW

dent messages for a message m are present in the system.
Thus, the probability of causality violations is higher.
Further, the number of causality violations in CBD is sig-
nificantly less than that in DAPW.

When ¢ is an overestimate of message delay (i.e., mes-
sage delay of N (2, 2)), the number of causality violations

in CBD is in the order of 0% — 2% (cf. Figure 4 (d)).

)
29

This is due to the fact most messages arrive within
and, hence, CBD has more information present in the
message queue to detect/prevent causality violations be-
fore delivering a message.

Further, for small values of message rate, causality vi-
olations in DAPW and CBD are nearly equal. This is
due to the fact that at low message rates, CBD has very
limited information to exploit the messages in the queue.
Further, as CBD incurs an additional overhead of pro-
cessing the message queue, we expect that DAPW will be
preferred for small values of message rate.

6.4 Effect of Number of Processes

The effect of number of processes on causal delivery of
messages using DAPW and CBD is shown in Figure 5.
The results are for ¢ = § = 10 and message rate = 0.1.
We use the following values for the number of ordinary
processes: 5, 10 and 50.

As the number of processes increases, more causally
dependent messages for a message m are present in the
system. Thus, the probability of causality violations is
higher.

Furthermore, when ¢ is an overestimate of message de-
58
18
ity violations in CBD is in the range of 0% — 3% (cf. Fig-

lay (i.e., message delay of N(£, %)), the number of causal-
ure 5 (d)). Since most messages arrive within §, CBD
detects/prevents most of the causality violations.
6.5 Physical Clocks Vs. Partial Timestamps
In this section, we argue that the information main-
tained in CBD, although small, is important in reducing
the number of causality violations. Towards this end, we

compute the causality violations for the case where only
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physical clock is used to determine when a message should

pRCL i ——
. : . : g 2kn.e clemerts § wf X 2inecemens 7
be delivered. To obtain an implementation that uses phys- g “ine clements 1 5 2Kne elements
2 6kne elemésg(s — 2 elemgg(;
. . = =
ical clock alone, we set the ¢ value and all elements in kn H H
3 3
to 0. We call this algorithm DPC1. We also consider the B Por 8
X . T A N Nt
algorithm DPC2 where the ¢ value is used but kn values %0 s s 4 20 o %00 s s 40 20 o

are reset to 0. Other points on this continuum can be
obtained by maintaining a subset of the kn values in the
timestamp.
Notation. In this section, by “2 kn.e elements” we mean
that the simulation uses kn.ej[c.e;] and kn.ej[c.e;—1] ele-
ments instead of the kn.e; array for an event e;. Similarly,
by “k kn.e elements” we mean that the simulation uses
the first k kn.e elements.

Figure 6 shows the simulation results for e = § = 10,
message rate=0.1 and 10 processes. (Figure 7 shows the

results for 50 processes.)

% of delay used in delcond

(a) (b)

% of delay used in delcond

Fig.6 Effect of using partial timcstamps with 10 processes on (a)

CBD with delay N (2, $), (b) CBD with delay N(

2' 4 4’8)

From Figure 6, we observe that using physical clocks
alone for causal delivery of messages is not enough. Specif-
ically, even when ¢=100%, DPC1 and DPC2 have around
30%—50% of causality violations. And, maintaining just 2
kn.e elements provides a significant reduction in number
of causality violations (10—15%). Moreover, if we increase

the number of kn.e elements in the timestamp, the causal-
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ity violations can be further reduced. Maintaining just 6
kn.e elements gives the same result as CBD. Thus, the
timestamp provides a continuum in which the application
developer can choose the size of the timestamps based on
the requirements. This result is especially important in
sensor networks. Specifically, in MICA motes [1], the pay-
load size is just 29 bytes. Hence, the overhead in achieving
approximate causal delivery should be small. Depend-
ing on the percentage of causality violations processes
can handle and the overhead involved, the developer can
choose an appropriate size for the timestamp. For exam-
ple, choosing 2 kn.ec elements (i.e., 4 bytes including rt.j
and c.j) will result in 10 — 15% causality violations (as
opposed to 30 — 50% causality violations when using the
physical clocks alone). Thus, small additional informa-
tion maintained in the timestamp plays a significant role

in reducing the number of causality violations.
7. Conclusion and Future Work

In this paper, we presented a solution for approximate
causal delivery. We discussed the effect of the parame-
ters such as maximum clock drift, maximum message de-
lay, and message rate on causal delivery of messages. We
showed that by using physical clocks alone, the number of
causality violations increase significantly. By adding new
variables to the timestamp, the number of causality vio-
lations can be reduced. In other words, we showed that
our solution provides a continuum such that the appli-
cation developer can choose the size of timestamps used
in the system based on the number of causality viola-
tions the application can tolerate. This result is especially
useful in sensor networks, since the sensors are resource
constrained and the size of the payload in a message is
very limited (e.g., 29 bytes in MICA). From Section 6. 5,
we note that maintaining just 2 kn.e elements (i.e., 4
bytes) provides a significant reduction in causality viola-
tions (10 — 15%) compared to using physical clocks alone
(30—50%). Hence, causal delivery of messages at the base

station can be achieved easily in sensor networks with a

T 5)

small message overhead. To our knowledge, this result
is the first of its kind for providing approximate causal
delivery in sensor networks. Moreover, DAPW and CBD
preserve the self-stabilization [14] property of the algo-
rithm in [12], i.e., starting from arbitrary initial states,
the system recovers to states from where causal delivery
is achieved. Hence, if the sensors are corrupted, our algo-
rithm ensures that eventually approximate causal delivery
is restored.

There are several possible extensions to this work. We
are currently investigating the performance of our ap-
proach with trace data from experiments such as [17].
This allows us to study the effect of causality violations
on large scale sensor network applications. Further, it al-
lows the application developer to choose the size of the
timestamps and the delivery time of a message. Another
interesting extension to this work is to study of the effect
of buffering time at the intermediate sensors.
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