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Wireless sensor networks (WSNs) are formed of tiny, highly energy-constrained sensor nodes that are equipped

with wireless transceivers and can be used primarily in environmental monitoring applications. The nodes com-

municate with one another by autonomously creating ad-hoc multihop networks which are subsequently used to

gather sensor data. WSNs also process the data within the network itself and only forward the result to the

requesting node. This is referred to as in-network data aggregation and results in the substantial reduction of

the amount of data that needs to be transmitted by any single node in the network. We present a framework

for WSNs which would allow optimised query execution plans to be generated in a distributed manner using

only locally available information within the network thus preventing the need to transmit network metadata all

the way to a central server. We also describe how this framework can be used to perform cross-layer optimisa-

tions and illustrate this by presenting a MAC protocol that adapts its operation according to data gathered by

the query processing engine. Query plans also adapt continuously by monitoring varying network conditions to

maintain energy-efficient operation thus maximising network lifetime.
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1. Introduction

Wireless sensor networks (WSNs) are formed of tiny,

extremely low-powered sensor nodes that are equipped

with built-in wireless transceivers. Fig. 1 shows a picture

of a development board of an EYES 3) sensor node to-

gether with some of its specifications. It is currently used

for testing purposes and the final version of an EYES

node will be around the size of a one Euro coin. These

nodes may be deployed in large numbers and are capable

of communicating with one another by autonomously cre-

ating multihop ad-hoc networks which are subsequently

used to gather sensor data. Considering the fact that

these battery-powered nodes are supposed to operate for

months (possibly even years) and that it is assumed that

battery replacement is not a viable option due to the large

numbers of nodes involved, one of the primary concerns

of wireless sensor networks is how to extend the longevity

of the network to the furthest possible extent by devising

novel ways of managing energy reserves.

Our framework describes a distributed and adaptive

query processing engine for wireless sensor networks that

addresses two main problem areas - making use of locally
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Fig. 1 A development board of an EYES sensor node.

available information and providing a platform that al-

lows various system components of the WSN architecture

to adapt to varying network conditions. In existing sys-

tems 1), 7) network metadata is relayed back to a central

node by all the nodes in a sensor network at regular in-

tervals. This information is used to obtain a global view

of the network which in turn helps to generate optimised

query execution plans. The central node subsequently

sends out instructions to specific nodes to perform cer-

tain tasks, e.g. data aggregation, routing, etc. More-

over, to generate query execution plans that are up-to-

date with the current network dynamics, it is essential

that the central node always has a fresh view of the net-
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work. This mechanism has two fundamental problems.

Firstly, the transmission of all network metadata by every

node in the network to a central node at regular inter-

vals is an extremely energy consuming task and secondly,

in large networks, the collection of network metadata is

a particularly high-latency process. Thus the generated

query plan may be rendered useless due to backdated net-

work metadata. In view of these problems, we suggest a

framework where the generation of query execution plans

is performed within the network based on locally avail-

able knowledge thus cutting back drastically on expen-

sive transmissions to a central node. Consequently a node

evaluates incoming queries and generates query execution

plans based on the network metadata relayed by its neigh-

bouring nodes.

Instead of ”static” query execution plans where the cen-

tral node instructs a certain node in the network to per-

form a specific task, an additional feature of our frame-

work is that it allows query plans executing within the

network to adapt to varying network conditions. These

query plans are generated based on information that is

captured locally. The information can also used be used

by other system components such as the MAC, routing

layer, operating system and query processor. These are

explained in greater detail later.

In this paper we first give a brief overview of the re-

lated work in this area. We then present a framework

for a distributed query processing engine for wireless sen-

sor networks that will allow wireless sensor nodes to au-

tonomously gather and analyse data on-site in an en-

ergy efficient manner. We also describe how the frame-

work provides a platform which allows other system com-

ponents to adapt their operation based on the locally-

available information captured by the query processing

engine. As an example of the benefits of such a system,

we show how the operation of a MAC layer can benefit

from being more ”application aware” and present some

preliminary results. We finally conclude the paper by sta-

ting the work that needs to be done in the future to build

up on the framework presented.

Our work on WSNs is performed as part of the NWO

funded CONSENSUS project 2) on self-organising and col-

laborative energy-efficient sensor networks. It addresses

the convergence of distributed information processing,

wireless communication and mobile computing.

2. Related work

The most energy consuming operation a node can per-

form is the transmission of data. In fact, transmitting

just 1Kb of data a distance of 100 metres is approximately

equal to the cost of executing three million CPU instruc-

tions 9). Apart from simply collecting data, WSNs are de-

signed to process data within the network itself and sub-

sequently forward the result to the requesting node. This

is referred to as in-network data aggregation and results

in the substantial reduction in the amount of data that

needs to be transmitted within the network as a whole

which in turn translates into substantial energy saving.

Data aggregation can be performed by intermediate nodes

that lie between the sink (a node that injects a query into

a network) and source (a node that responds to a query

by sensing some physical parameter) node. These inter-

mediate nodes carry out partial computation of the data

obtained from sensor nodes thus ensuring that each node

only has to transmit one data message. This also im-

plies that bandwidth requirements between neighbouring

nodes remain constant regardless of their position in the

tree.

While performing data aggregation within the network

may result in extending the operational lifetime of sensor

nodes, it is important to note that there may be numer-

ous ways to evaluate any particular query. Out of all

these possibilities, only a handful might actually lead to

energy savings. Thus it is important to develop a system

that can analyse every incoming query and work out the

optimal solution using the current network dynamics to

ensure accurate decision making.

In certain existing query processing systems such as

COUGAR 1) and TinyDB 7), network statistics (or net-

work metadata) such as patterns of data produced by in-

dividual nodes, location information and energy reserves

of nodes, etc. are sent back periodically to the central

node (server) which originally injected a query into the

network.

Using the centrally collected data, the server, which

now has a detailed overview of the status of the entire

network of nodes, calculates the optimal method in which

the query may be evaluated. So the server generates a

set of instructions that are then sent out to the individ-

ual nodes explaining the role individual nodes will play in

evaluating the query, e.g. the server may stipulate which

specific nodes would be required to perform aggregation

of data for a particular query.

Another well known data-centric aggregation frame-

work is Directed Diffusion 5) that is based on a pub-

lish/subscribe API. This however, does not use a database

approach towards managing sensor data. Instead it uses

a lower-level approach and does not hide the networking
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specifics from the user thus making deployment of a sys-

tem more difficult. DFuse 6) has a dynamic approach of

placing fusion points but once again fails to provide the

user with a SQL-like interface that is highly user-friendly.

Also, DFuse is unable to handle data-centric queries and

assumes that the specific addresses of nodes are known at

the time of a query.

3. Design of the query processing engine

We have suggested a new framework for a completely

distributed and adaptive query processing engine (QPE)

for wireless sensor networks. The primary difference from

the existing models is that in our framework, we transfer

the task of generating query plans from a central node to

the sensor nodes that lie within the network. Since nodes

generate query plans using information that is available

locally they greatly reduce the number to transmissions to

the server. Every node would be able to detect changes in

its vicinity and make necessary changes to the operation

of its system components almost immediately. Also, the

query evaluation procedure is carried out autonomously

by the nodes and is completely transparent to the user.

The user need not be concerned about the current net-

work dynamics.

In this section, we highlight two of key features of our

framework. First we describe its architecture which pri-

marily deals with the individual building blocks of the

QPE that help in the efficient processing of an incom-

ing query. The second feature illustrates how the QPE

provides the foundation that allows various system com-

ponents to adapt. To demonstrate the benefits of our

design, we describe how a MAC protocol adapts its op-

eration using our framework as an example. Both these

features would help to extend the network lifetime.

3. 1 Architecture of framework

The QPE has a hybrid design involving a combination

of centralised and distributed architectures. It consists of

two sections - one residing on the main server (i.e. the

central node) and the other residing on every node within

the network. The section residing on the server carries

out optimisations based solely on incoming queries. It

does not require any information about the distribution

of data within the network.

The second section of the QPE lies on top of the op-

erating system in every node within the network. It is

structured as shown in Fig. 2. The six components shown

in Fig. 2 can be separated into two sections based on their

functionality. The following subsections describe the role

of each block in Fig. 2. The following is a brief description

Incoming
Query

Outgoing
Results

Outgoing
Query

Incoming
Results

1) Data
Localisation

6) Query
Optimisation

2) Fragment
Schema

3) Fragment
Allocation

5) Network
Metadata

4) Cost
Function

Shaded area indicates
feedback loop.

Fig. 2 Framework of the distributed query processing engine.

of each block:

• Data localisation - The main role of the data localisa-

tion block is to localise the query’s data using data dis-

tribution information which is obtained from the Frag-

ment Schema block. Thus data localisation examines

the incoming query from the query decomposition block

and determines which fragments of data are involved in

the query. It also retransforms incoming queries into

simpler and more optimised forms by using different

reduction techniques depending on how the data has

been fragmented. For example, when selections on frag-

ments are made that have a qualification contradicting

the qualification of a fragmentation rule, empty rela-

tions (or redundancies) are generated. Reduction rules

ensure that such empty relations are eliminated.

Suppose we have a relation sensors containing read-

ings of light and temperature of different floors in a

building which is split into three horizontal fragments

sensors1, sensors2, sensors3 and is defined as follows:

(1) sensors1=σFloor≤”4” (sensors)

(2) sensors2=σ”4”<Floor≤”8” (sensors)

(3) sensors3=σ”8”<Floor≤”12” (sensors)

Thus the localisation program for such a horizon-

tally fragmented relation would be as follows:

(4) sensors = sensors1∪sensors2∪sensors3

Such horizontal fragmentation can help to simplify

certain operations as it is possible to produce empty re-

lations and subsequently eliminate them. This can be

illustrated in the case of a selection operation as shown

in the following SQL statement:

SELECT nodeid, temp, light

FROM sensors WHERE Floor= 7

SAMPLE PERIOD 1s for 60s

The statement above gathers temperature and light

readings from the 7th floor every second for a whole

minute. The näıve way to process this query would

be to replace every instance of sensors with (sensors

= sensors1∪sensors2∪sensors3). It is evident that
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sensors1 and sensors3 would then produce empty re-

lations which are undesirable. Thus the reduced query

is only applied to sensors2. Such query simplifications

can subsequently be used to limit the broadcast of a

query to a particular section of the network thus re-

sulting in energy consumption due to the reduction of

transmissions.

• Fragment schema - The Fragment Schema describes

how it is possible to reconstruct a relationship from the

various fragments. It extracts the information from the

Fragment Allocation Block. In other words it may de-

scribe how to apply a set of UNION operations to recre-

ate a relation from the fragments.

• Fragment allocation - The task of the Fragment Allo-

cation block is to decide at which node a certain frag-

ment of a relation should be stored. Suppose there are

a set of fragments F = F1, F2,.., FN and a cluster of

sensor nodes, S = S1, S2,.., SN , the Fragment Allocator

needs to find the optimal distribution of F to S. There

are numerous parameters that need to be considered

during the optimisation process, e.g. cost of communi-

cation between any two nodes, Si and Sj , varying ac-

cess patterns of various nodes, mobility patterns, cost of

storing each Fi at a site Sj , cost of querying Fi at a site

Sj , remaining energy reserves of a node and memory

and performance parameters such as throughput and

response time.

• Cost function - The Cost Function block stores the

cost of some static parameters such as cost of polling a

sensor and are generally defined prior to deployment of

the sensor network.

• Network metadata - This block gathers network sta-

tistics based on every single query or result that the

node hears, i.e. the query or result may not be ad-

dressed to it specifically but it might overhear a certain

message from a neighbouring node that is within its

transmission range, e.g. sizes of relations, patterns of

query flow, energy and memory reserves of a particu-

lar node. One of the main components of the Network

metadata block is the Data Distribution Table (DDT),

Fig. 3 . The DDT is responsible for gathering infor-

mation about the data that flows through a particular

node. The information collected and stored in the DDT

is used by other system components to adapt their op-

eration according to the network dynamics.

Overview - Once a node receives a query it looks up its

Data Distribution Tables (DDTs) to deduce how many

of its children are going to respond to the particular

query. Every node maintains its own set of DDTs each

of which is a table representing a particular type of sen-

sor that is present within its set of child nodes. So if

for instance a node and its children possess tempera-

ture and air pressure sensors, then the node would have

two separate DDTs. A DDT is built over time by mon-

itoring the data that flows through it. In other words,

statistics about the data flowing through the network

is collected without incurring any extra overhead. It

is simply based on the data that already needs to flow

from the leaf nodes to the root. Thus statistics are col-

lected using only locally available information.

Upon receiving a reading from a child node, the par-

ent node updates the entry in the appropriate DDT

depending on a number of variables: the type of sen-

sor that originally generated the reading, the region

where the reading originated from and the value of the

reading itself. Additionally, the DDT also keeps track

of the maximum and minimum readings obtained and

also which particular immediate neighbour sent it the

reading. As shown in Fig. 3, apart from the first three

columns of a DDT, the remaining columns contain the

number of readings received that fall within a particular

range.

Active children It is important to highlight that the

numbers or rather the ”count” found in the DDT is not

simply a count of the total number of children a node

has. It only includes the number of active children. By

active children, we are solely referring to the number of

nodes that are actually involved in servicing a particular

query. Knowledge of the number of active children for a

certain query would help in making rough estimates on

how much data can be expected and this information

can then be used to adapt the various components of

the WSN architecture accordingly. For example nodes

in areas which are generating larger amounts of data

can be made to work more aggressively.

Directed dissemination using multiple DDTs and

ranges Using multiple tables and categorising the in-

coming data into ranges has several advantages. Instead

of flooding the entire network with queries, it would

be possible to have a directed dissemination of queries.
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Thus the dissemination of queries could only be limited

to certain sections of the network. However, instead

of disseminating queries only depending on region, the

DDT allows more complex query dissemination schemes

to be derived from queries that are injected into the

network by the end-user. These complex schemes could

span across multiple DDTs.

For example, the user could inject a query that re-

quests for solar radiation readings in a particular re-

gion only when the temperature reading for the same

region is above a certain threshold and the air pres-

sure readings are within a particular range. This would

involve parsing both the temperature and air pressure

DDTs. The DDT also allows query optimisation to be

performed on an incoming query. Suppose a query asks

for all temperature readings above say 35C. If the DDT

indicates that all readings above 35C only appear from

a certain region, then the query dissemination could be

limited only to that region even though it was not spec-

ified by the user. Thus in both examples, it is obvious

that the number of nodes that would be involved in the

query dissemination process could be greatly reduced.

Using only local information As can be seen from

Fig. 3, every DDT includes a list of the immediate

neighbours that have contributed to readings that fall

within a certain range. This is used once again during

query dissemination to forward incoming queries to the

right node, i.e. the node that has been relaying data

within the range that the query is interested in. Since

the information contained in every DDT of every node

is purely based on the immediate neighbourhood, the

size of the DDT is not dependent on the depth of the

node within the tree. In other words the size of the

DDT does not increase depending on the number of

active children a node possesses. The size of the DDT

however, is largely dependent on the number of different

types of sensors present in the child nodes, the number

of regions defined within the network and the number

of ranges the sensor readings are classified into.

Keeping DDTs up-to-date All All DDTs would have

an expiry time attached to them since the range infor-

mation will not remain accurate through out the entire

lifetime of the network. Thus it is important to occa-

sionally re-flood the entire network so that the latest

ranges of readings are reflected in the DDT. The fre-

quency at which the DDT needs to be refreshed depends

on the rate of variability of the physical phenomenon

being measured, and this will be defined by environ-

mentalists during network deployment.

Adapting to varying network and query dynamics

The dynamics within a WSN can be classified into two

sections: network dynamics and query dynamics. By

network dynamics we refer to the ability to continue

operation when certain nodes die out and when nodes

with new sensors are attached to the network. As men-

tioned earlier, we do not consider mobile nodes at this

stage. If a node dies out, or is removed, this change is

reflected in the corresponding DDT after the predefined

expiry time has expired. Also, if a node with a new sen-

sor is added to the network, the immediate parent node

and all the related ancestral nodes automatically create

a new DDT to reflect this new addition.

Using the information collected in the DDT, compo-

nents of the WSN can also change their operation to

adapt to varying query dynamics. Query dynamics re-

fer to the situation when the number of queries passing

through a particular node at any point of time varies.

We mentioned earlier that we expect multiple queries to

be injected into the network distributed both spatially

and temporally. Thus various system components, such

as the MAC for instance, can adapt its operation based

on a not just a single query but based on the net re-

quirements of all queries being served at a certain point

of time.

Query Optimisation The Query Optimisation block

receives several execution strategies (or operator trees)

for a single query from the Data Localisation block. It

is within this block that the QPE actually takes into ac-

count the distribution of data fragments, various costs

involved and the current network dynamics in order to

generate a query execution plan.

3. 2 Adapting to Network Dynamics

The framework we have presented up to now provides

a foundation that will allow the various components of

the WSN architecture to adapt to the varying network

dynamics. We now briefly describe how certain compo-

nents can make use of the QPE to adapt their operation

accordingly.

Medium Access Control Protocol (MAC) Instead of

having a static duty cycle through out the network, the

MAC can take advantage of the knowledge gained about

the queries injected into the network by the application

and dedicate more bandwidth to the relevant parts of

the network. Thus while the MAC may work aggres-

sively in certain areas, in other areas it will remain rel-

atively dormant. This will ensure that bandwidth is

allocated fairly and thus also prevent energy from be-

ing wasted in areas where data need not be collected.
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We give a more detailed analysis of how the MAC can

benefit in the following section.

Routing Queries are disseminated only to areas where

they are more likely to return readings which meet the

criteria set by queries, e.g. why send queries to sector

A of the network when the user is only interested in

sectors B and C?

Operating system Scheduling of tasks to be executed

by the CPU can be prioritised based on the data traffic

rates that have been predicted by the QPE. This will

make the system more responsive to changes within the

network.

Query optimisation Queries can be processed more

efficiently if a node has knowledge of the distribution

of data in the network. Consider a nested query as an

example which states that Obtain the reading of Para-

meter A, only if Parameter B and Parameter C meet

the conditions X and Y respectively. If Parameter B

has a high selectivity, i.e. small number of active child

nodes, and Parameter C has a low selectivity, i.e. large

number of active child nodes, it would obviously be a

lot more energy efficient to check Parameter B before

Parameter C.

4. AI-LMAC: An example illustrating

how a component can adapt using the

QPE

The Adaptive and Information-aware, Lightweight

Medium Access Protocol (AI-LMAC) is a TDMA-based

protocol that is an adaptive and information-aware ver-

sion of the LMAC protocol 4).

Time is divided into time slots, which nodes can use to

transfer data without having to contend for the medium

or having to deal with energy wasting collisions during

transmissions. A time slot consists of two parts: the

Control Message (CM) which is always transmitted by

a node in the time slot(s) it controls and the Data

Message (DM), which contains the higher protocol layer

data. The CM has a fixed length and contains control

information. The DM can have a length up to the end of

the time slot or can even be omitted when the node has

no data to send. For energy-efficiency reasons, nodes

will turn-off their energy consuming transceiver when

they are not the intended receivers of a DM, or when

the transmission of a DM has finished before the end

of the time slot. To be able to maintain the protocol,

nodes will always listen to CMs of their neighbouring

nodes.

To limit the number of time slots necessary in the

Fig. 4 A new active node in the network can pick a time slot

when it has discovered all its neighbour nodes.

network, we allow time slots to be reused at a non-

interfering distance. Unlike traditional TDMA-based

systems, the time slots in AI-LMAC are not divided

among nodes by a central manager. Instead, the nodes

use an algorithm that is based on local information only

to choose time slots to control. Every node transmits a

table in the CM that specifies which time slots the node

considers to be occupied by itself and its one-hop neigh-

bour nodes. This information can be efficiently encoded

by a number of bits equal to the number of time slots in

a frame. A node can occupy the appropriate slots when

the required number of slots is considered to be free by

all its neighbours. This method ensures that a time slot

is only reused after at least three hops and that no col-

lisions will occur. In fact, most MAC protocols ensure

a similar distance between simultaneous transmissions.

For example, in the SMAC protocol, this distance is

assured by the exchange of RTS- and CTS-messages.

Fig. 4 gives an example of how a new node in the net-

work can pick a time slot after it has discovered all its

neighbours. When a node picks a time slot to control,

it will control the same time slot in consecutive frames.

Currently, we are considering frames of 32 time slots.

Note that nodes will only use their own time slots to

transmit data to their neighbouring nodes. In the AI-

LMAC protocol, nodes are allowed to control multiple

time slots in a frame. To ensure a connected network,

every node controls a minimum of one time slot.

◦ Control message of AI-LMAC - The Control Mes-

sage has a fixed size and is used for several purposes.

It carries the ID of the time slot controller, indicates

the distance of the node to the gateway in hops for

simple routing to a gateway in the network, addresses

the intended receiver(s) of the Data Message, reports

the length of the DM and it carries acknowledgements

to successfully received messages. The control data

will also be used to maintain synchronisation between

the nodes and therefore the nodes also transmit the

sequence number of their time slot in the frame. The
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transmission of the control data is carefully timed by

the nodes, although we do not assume that the nodes

have clocks with high accuracy. We assume that the

clock drift is negligible in a single frame, even for

clocks with low accuracy. All neighbouring nodes

will ensure they receive the control messages of their

neighbouring nodes. When a node is not addressed

in that message or the message is not addressed as

a broadcast message, the nodes will switch off their

power consuming transceivers only to wake up at the

next time slot.

◦ Network setup - When nodes are powered on, they

are all unsynchronised. Also nodes are unaware of

the number of slots they need to control. In order to

get synchronised, the gateway takes the initiative to

start controlling a time slot. The control messages of

the gateway are received by its one-hop neighbours.

These neighbours then synchronise their clocks to the

gateway. After one frame, the one-hop neighbours

are aware of all time slots that are owned by possible

multiple gateways in their reception range. Next, the

recently synchronised nodes will pick a random time

slot. Slots already occupied will be excluded from

this random slot selection process.

Once the nodes have been synchronised, the next

step is to assign the right number of slots to a node de-

pending on the expected traffic of a particular query

as described in the following section. For details of

the support for routing to the gateway node, we refer

the reader to 4). Note that the protocol also supports

ID-based routing techniques, without adaptation of

the protocol.

4. 1 Adapting AI-LMAC using the data

management framework

We now describe how AI-LMAC can adapt its op-

eration using the information provided in the DDT.

Unlike LMAC, which allows every node within the

network to own only one slot 4), AI-LMAC allows a

node to own multiple slots. Also, AI-LMAC is able

to vary the number of slots a particular node owns

depending on the amount of data that is expected to

flow through it. This ensures fairness in the sense

that the bandwidth allocated to a node corresponds

to the traffic it is expected to encounter. For exam-

ple, it would be pointless to allocate a large number

of slots to a particular node that is not generating or

relaying significant amounts of data.

In AI-LMAC, we assume that a parent-child rela-

tionship exists between all the nodes in the network,

such that the root of the network can be considered

to be the highest parent in the hierarchy. Using the

DDT, every node would know how much ”impor-

tance” to give every one of its immediate children.

Using the DDTs a node cannot decide by itself,

how much importance it should give itself to trans-

mit. This is because the DDTs only contain infor-

mation about a node’s active child information. A

node is not aware of the data generated by the other

children of its own parent node as they may not be

in range. Thus, the parent is the only node that has

knowledge of the proportion of data that will be con-

tributed by each of its immediate children. The idea

here is that if a node realises that a subset of its im-

mediate children is going to transmit large quantities

of data, then more attention Figure 4. A new ac-

tive node in the network can pick a time slot when

it has discovered all its neighbour nodes needs to be

paid to this particular subset of child nodes. In this

case, when we say more attention, we actually refer

to assigning multiple slots to a particular child.

However, even though a parent node knows which

child node deserves more slots to be assigned to it,

it cannot send such a rigid instruction to its children

as in LMAC. This is because in LMAC, when a node

performs slot assignment, it has knowledge of the slot

ownership of its first and second order nodes. In this

case, the parent node would not know slot ownership

information about the slot assignments of its child

node’s second order nodes since they are three hops

away. Thus, the responsibility of the parent node

is simply to ”advise” the child, i.e. the parent node

sends a message to every one of its children indicating

the ideal number of slots that a particular node should

take up under the current conditions. It is then up

to the child node to follow the advice as closely as

possible. This naturally depends on the number of

empty slots available.

The process of giving advice starts at the root node

of the tree when a query is first injected into the net-

work. This process then percolates down the branches

of the tree towards the leaf nodes. If however, the

process of giving advice started at an intermediate

node, this would increase the chance of performing

unfair slot allocations. This is because a node as-

signing slots would not be aware of the bandwidth

requirements of all its sibling nodes which are not

within its direct range. From this argument, it is ob-

vious that if we apply this rule repeatedly, the root
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node is the only node which can assign slots fairly at

the beginning. We term this as horizontal fairness as

the mechanism ensures that all sibling nodes (i.e. at

the same level) under a certain parent are allocated

slots fairly.

Apart from establishing a horizontal relationship

between nodes, we also introduce a mechanism to

include vertical fairness. In order to prevent buffer

overflow problems, our mechanism ensures that that

the total number of slots assigned to the immediate

children of a certain parent node, does not exceed the

number of slots owned by the parent. This reduces

the likelihood of data packets being dropped due to

lack of bandwidth. Furthermore, leaf nodes are pre-

vented from being allocated excessive bandwidth us-

ing this mechanism.

Thus introducing two-dimensional fairness ensures

that the number of slots taken up by a node does not

only depend on its siblings but on its parent as well.

Once a node has received the ideal number of slots

it should take up, it checks to see which slots are

free within its 2nd order neighbourhood. Just like in

LMAC, once a node decides to take up a certain slot,

it ”marks” the slot using a ”1” to indicate that the

slot has been taken up.

In LMAC, a node transmits its control message

(CM) section at the beginning of every slot it owns.

Therefore every occupied slot in the frame has a CM

section. However, in the case of AI-LMAC where a

node may own multiple slots, the CM section is only

transmitted during the very first slot it owns. Subse-

quent slots owned by the node only contain the Data

section. This reduces the overhead incurred. In addi-

tion to the information contained in the CM section

stated in 4), it also contains a list of all the slots that

it owns. Suppose a node B receives a CM section

from node A, and node B realises that it is supposed

to receive the data that node A is going to send, node

B makes sure that it is in receive mode during every

slot that is specified in the CM section of node A.

Other nodes which are not addressed in node A’s CM

section, only restrict their listening to the initial sec-

tion of every slot in a frame which is usually reserved

for the CM section.

4. 2 Experimental Analysis

Our framework provides a mechanism to assign

more bandwidth to those parts in the network that

encounter more data traffic than others. In fact, the

assigned bandwidth is proportional to the expected
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Fig. 5 Average latency and standard deviation when all

nodes control one time slot.
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Fig. 6 Average latency and standard deviation; maximum

given advice: 2 slots.

traffic. Hence our framework is able to minimise the

overall latency in the network and also the number

of messages which need to be buffered in the nodes.

Fig. 5 presents these measurements for the single slot

scenario. These results are obtained by simulation us-

ing the discrete event simulator OMNeT++ 8). Re-

sults are averaged over five different network topolo-

gies consisting of 49 nodes and one root. Ten different

runs were carried out per topology.

In Figs. 6–10, the advice for the maximum number

of allowable time slots is varied from 2 to 16. The re-

sults clearly indicate that latency is proportionally re-

duced with the maximum number of controlled slots.

However, this holds true only until eight slots, Fig.

8. For the twelve and sixteen slot scenarios, the num-

ber of free slots in the network rapidly decreases with

every hop from the root and thus the nodes are not

able to comply with the advice. Consequently, a bot-

tleneck is created at a few hops (6 to 8) from the

root, resulting in higher latency for messages created
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Fig. 7 Average latency and standard deviation; maximum

given advice: 4 slots.
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Fig. 8 Average latency and standard deviation; maximum

given advice: 8 slots.
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Fig. 9 Average latency and standard deviation; maximum

given advice: 12 slots.

in those areas.

In this MAC protocol, nodes are able to receive up

to 32 (=number of time slots) messages per frame.

The number of messages that can be transmitted per

frame is dependent on the number of time slots the
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Fig. 10 Average latency and standard deviation; maximum

given advice: 16 slots.

Table 1 Maximum number of back logged messages (worst

case)

Scenario Maximum messages

1 slot 105

2 slots 63

4 slots 34

8 slots 32

12 slots 54

16 slots 56

node controls. When the number of incoming mes-

sages exceeds the number of messages that can be

transmitted during a frame, the additional incoming

messages have to be buffered. For each of the scenar-

ios, we have collected data about the maximum num-

ber of messages back logged in the worst case (Table

1). These results reflex the same trend as Figs. 5–10.

Note that in real-life implementations, the capacity

to hold back logged messages will be limited due to

scarce memory resources in the sensor nodes.

5. Conclusion and future work

In this paper, we have described a framework for

a distributed and adaptive query processing engine

for wireless sensor networks where we concentrate on

two primary problems (i) reducing transmissions by

generating query optimisation plans based on local

information, (ii) introducing a platform which allows

other system components to adapt their operation

according to network dynamics. We have also pre-

sented preliminary results showing how the perfor-

mance of a MAC layer can benefit greatly by being

more application-aware. Future work shall concen-

trate on extending the DDT to include information

about data generation rates and degree of data ag-

gregation. We shall also be looking into the memory
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requirements of the framework.
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