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The Elevator Group Supervisory Control Systems (EGSCS) are the control systems that systematically manage three or more 
elevators in order to effciently transport the passengers in buildings. Double-deck elevators, where two cages are connected with 
each other, are expected to be the next generation elevator systems. Meanwhile, Destination Floor Guidance Systems (DFGS) are 
also expected in Double-Deck Elevator Systems (DDES). With these, the passengers could be served at two consecutive floors 
and could input their destinations at elevator halls instead of conventional systems without DFGS. Such systems become more 
complex than the traditional systems. Recently, Genetic Network Programming (GNP), a graph-based evolutionary method, has 
been applied to EGSCS of DDES with DFGS and its advantages are shown in some previous papers. GNP can obtain the strategy 
of a new hall call assignment to the optimal elevator because it performs crossover and mutation operations to judgment nodes 
and processing nodes. In the past studies the passengers’ arrival distribution has been assumed to take Exponential distribution for 
many years. In this paper, we have applied Erlang distribution and Binomial distribution in order to study how the passengers’ 
arrival distribution affects EGSCS. We have found that the passengers’ arrival distribution has great influences on EGSCS of 
DDES with DFGS. 

 
Keywords: elevator group supervisory control system, passengers' arrival, erlang distribution, genetic network programming 

 

1. INTRODUCTION 

There have been installed more and more high-rise buildings in 
the cities for the spatial and economical considerations. To provide 
transportation services among floors in the building, elevator 
systems are installed as primary service facilities. Elevator group 
supervisory control systems (EGSCS)(1) are responsible for 
controlling elevators to provide convenient and comfortable 
services for passengers. The new generation elevators, 
Double-deck elevators (DDES)(2) are designed to connect two 
cages in an elevator shaft. This allows passengers on two 
consecutive floors to use the elevator simultaneously, significantly 
increasing the transportation capacity of elevator systems. 
Recently, Destination Floor Guidance System (DFGS) (3) (4) is 
getting more and more popular. Differently from traditional 
systems, the passengers input not only their presence and intended 
direction, but also their destination at floors in DFGS. This allows 
more efficient control of grouping elevators by their destinations, 
thus reducing the number of stops of the elevators. 

Furthermore, since the elevator system is driven by passengers’ 
arrival, its probability distribution characterizes the traffic in the 
elevator systems. In order to get tractable analytical results, 
researchers have used Exponential distribution to model the 
elevator systems for many years. However, Erlang distribution is 
more general distribution of nonnegative random variables. In 
many cases, elevator installation has been carried out in order to 
increase the efficiency of the passengers’ movement in buildings 

or to increase the travel comfort for the passengers. Generally, in 
such elevator systems, the distribution of the arrival time interval 
would influence on the performances of elevator group 
supervisory control systems(5). Therefore, it is natural to use 
Erlang and Binominal distribution, especially when the passengers 
who get off at the railway stations adjacent to the buildings arrive 
at the floors of elevators. In this paper, it is studied how the 
distribution of passengers’ arrival time interval influences on 
EGSCS of DDES with DFGS and Genetic Network Programming 
(GNP) (6) (7) (8) (9) (10), which is a newly developed graph-based 
evolutionary computation method. 

The paper is organized as follows. Section 2, 3 and 4 gives an 
overview of DDES, GNP and describes the details of Erlang and 
Binominal distribution used for EGSCS, respectively. Section 5 
explains EGSCS using GNP. Section 6 shows the simulation 
conditions and results. Finally, some conclusions are described in 
section 7. 

2. ELEVATOR GROUP SUPERVISORY CONTROL 
SYSTEMS (EGSCS) 

Elevator Group Supervisory Control Systems (EGSCS) are 
control systems that manage multiple elevators in a building in 
order to efficiently transport the passengers. The systems assign a 
service car for a new passenger waiting in a hall. The assignment 
is a kind of real-time scheduling problem for transportation 
systems. The performance of EGSCS is measured by several 
criteria such as the average waiting time of passengers, the 
percentage of passengers’ waiting more than 60 seconds, and 
power consumption(11) (12), then, EGSCS manages elevators to 
minimize the above evaluation criteria; it is, however, difficult to 
satisfy all criteria at the same time. In this paper, the following 
two criteria are used. 
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1) Average waiting time (AWT) is the average time until the 
service elevator arrives at the floor after a passenger presses a hall 
call button. 
2) Average traveling time (ATT) is AWT plus the average time 
after the passengers get into the cage until drop off at the 
destination floor. 

The passenger traffic pattern in modern buildings with EGSCS 
varies considerably throughout a typical business day. Early in the 
morning, most of the passengers travel from the lobby to the upper 
floors (Up-peak), while at the end of the day, most of the 
passengers leave the floors and travel primarily to the lobby in 
order to exit the building (Down-peak). And other part of the day 
has its own characteristic patterns (Regular). Different traffic 
patterns have very different effects, and each pattern requires its 
own analysis. Up-peak and down-peak elevator traffic are not 
simply equivalent in the sense of opposite directions, as one might 
initially guess. Down-peak traffic has many arrival floors and a 
single destination, while up-peak traffic has a single arrival floor 
and many destinations. So, we study the systems with three types 
of traffic patterns, i.e., "Up-peak Time", "Down-peak Time" and 
"Regular Time". 
2.1 Destination Floor Guidance System (DFGS)

In traditional elevator systems, EGSCS consists of hall call 
buttons and car call buttons. If a passenger wants to go to another 
floor, he presses a direction (hall call) button and waits for an 
elevator to arrive, then enters the elevator and presses a 
destination floor (car call) button in the elevator. The EGSCS 
selects a suitable elevator when a passenger presses the hall call 
button. In order to obtain more accurate information on 
passenger's destination, Destination Floor Guidance System 
(DFGS) (12) has been developed, so that passengers can input their 
destinations at elevator halls. At each floor there is a keypad where 
the passenger selects which floor they wish to go to. The system 
then guides the passenger to an elevator that will be stopping at 
their destination floor. There are no floor buttons inside the cage. 
Such systems claim that the average waiting time can be reduced 
by up to 30%, by grouping passengers with common destinations 
into the same cage, and thus reducing the number of stops that 
need to be made. 
2.2 Double-Deck Elevator System (DDES)

Recently, for improving the capability of EGSCS, the 
Double-Deck elevator, where two cages are connected with each 
other, is expected as the next generation elevator. It allows the 
passengers at two consecutive floors could be serviced 
simultaneously. Such a scheme could be efficient in buildings 
where the traffic would have a stopping at every floor. 
Architecturally, double-deck elevators occupy less building core 
space than traditional single-deck elevators do for the same level 
of traffic. This allows much more efficient use of space, as the 
floor area required by elevators tends to be quite significant. 

Fig.1 shows the outline of Double-Deck Elevator Systems 
(DDES). In DDES, a passenger can in principle board either the 
lower or upper cage. Here, instead of "upper cage" and "lower 
cage", we also use the terms "self cage" and "other cage" in a 
more general sense. As the upper cage could not get to the bottom 
floor, we divide the base floor into "up-base floor" and 
"down-base floor". The two bottom floors are named "Base Floor". 
With the DFGS, when passengers come to the lobby of the 
building, the panel would tell them that they should go to the 
up-base floor or down-base floor to be serviced. Obviously, 
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Fig.1. Outline of Double-Deck Elevator System 
Double-Deck Elevator Systems (DDES) become more complex in 
their behavior than conventional Single-Deck Elevator Systems 
(SDES). 

DDES has specific features as shown below, and their careful 
consideration is expected to improve the performances of group 
supervisory control.  
One Cage Service: Self cage stops without any service while the 
other cage serves passengers at the floor. This situation causes not 
only the deterioration of transportation capability but also 
psychological stress to passengers.  
Coincident Service: Both cages serve passengers at a stop. 
Coincident service can contribute to improve both transportation 
capability and comfortable riding.  
Separate Riding for Identical Destination: Passengers for the 
identical destination ride on both cages. Therefore, the 
transportation capability deteriorates by two stops at the same 
floor. 

3. PASSENGER’S ARRIVAL DISTRIBUTION

Queueing systems use a particular form of state equations 
known as Markov chains(13). To drive a queueing model that 
represents real systems, we prefer a form that is simple or tractable, 
but it should be sufficiently realistic. It has been found convenient 
to work with probability distribution which exhibits the 
memoryless property, as it commonly simplifies the mathematics 
involved. As a result, queuing models are frequently modeled as 
Poisson Processes through the use of the exponential distribution. 

EGSCS of DDES with DFGS has been modeled by using the 
Exponential distribution as the passengers’ arrival distribution. 
However, is this case passengers’ arrival completely at random in 
time, which is not enough in traffic analysis. Sometimes we need 
to control the distribution of the passengers’ arrival time interval 
in order to make the model close to the real one. Especially, if the 
passengers who get off at the stations adjacent to the buildings 
arrive at the floors of elevators by the batch, we should consider 
the above. So here, we use the Erlang distribution to realize the 
time interval of passengers’ arrival and use the Binomial 
distribution to assign the number of the batch in order to study 
how the distribution of the passengers’ arrival influences on the 
performances of EGSCS of DDES with DFGS, because it has 
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Fig.2. The density of Erlang-k distribution 

been never studied yet in the past. It fits the passengers’ arrival 
characteristics and facilitates our further analysis.  
3.1 Erlang Distribution

A random variable X has an Erlang-k (k = 1, 2, …) distribution 
with mean k/µ if is the sum of k independent random variables 
X1, … , Xk having a common exponential distribution with mean 
1/µ. The common notation is Ek(µ) or briefly Ek. The density of an 
Ek(µ) distribution is given by 
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The parameter µ is called the scale parameter, k is the shape 
parameter. In Fig.2 we display the density of the Erlang-k 
distribution with mean 1 (so k/µ=1) for various values of k. 

Fig.3. Exponential arrivals, Erlang-10 and Binominal-Erlang-10 arrivals 

When k=1, the distribution is reduced to the exponential 
distribution which realizes the random process. As the shape 
parameter k increases, the distribution becomes like symmetry. 
When k≥30, it closes to normal distribution. When k→∞, it 
becomes a delta function at the value of k/µ. So, the Erlang-k 
distribution could make the time interval of passengers’ arrival to 
be the form from completely random to a certain value. It provides 
wider applicability to real systems. The Fig.3 illustrates that the 
time interval of the Erlang arrivals is much more equal than 
exponential arrivals and describes the number of the batch which 
is produced by Binomial distribution.  
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3.2 Binomial Distribution 
The binomial distribution Pk is a discrete probability 

distribution taking from 0 to n with mean of np. It denotes the 
number of successes in a sequence of n independent yes/no 
experiments, each of which yields success with probability p 
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We can realize passengers’ arrivals in the batch mode having 
the mean arrival rate of µnp/k by combining Ek(µ) and Pk. 

4. GENETIC NETWORK PROGRAMMING (GNP) 

Fig.4 shows the basic structure of GNP. As an extension of GA 
and GP, GNP has been proposed to have a network structure 
where functional nodes are connected by directed branches. GNP 
program is composed of one start node and plural judgment nodes 
and processing nodes. The start node has no functions and no 
conditional branches. Judgment nodes have decision functions 
with conditional branches. Each judgment node returns a 
judgment result and determines the next node to be executed. 
Processing nodes work as action functions. After the start node, 
the current node is transferred according to the node connections 
and judgment results. In processing nodes, actions are conducted 
to environments. All kinds of judgment and processing function 
labels (Judgment node: {1, 2, …, J}, Processing node:{1, 2, …, 
P}) are set up in the libraries, which are prepared by the designers. 
The node transition begins from a start node, and there is no 
terminal node. 

GNP has two kinds of time delays: one spends on judgment 
nodes or processing nodes, and the other one spends on node 
transitions. Since time delays are listed in each node gene and are 
unique attributes of each node, GNP can evolve flexible programs 
considering time delays. 

As shown in Fig.4, GNP can be illustrated by its "Phenotype" 
and "Genotype". Phenotype GNP shows the directed graph 
structure where nodes are connected by directed branches, and 
Genotype GNP provides the chromosomes encoded into bit-strings. 
The structure of the gene of node i is set as shown in Fig.4. There 
are node genes and connection genes in the genes of nodes. NTi is 
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the allele of node type (0: start node, 1: judgment node, 2: 
processing node). NFi indicates the function label which is defined 
in the library. di is the time delay of node i. Cik denotes the kth 
connecting node number from the current node i and dik shows the 
time delay of the transition. 

Fig.5. Structure of the proposed system 

In evolutionary computation, each individual is evaluated in the 
problem environment. Then the offspring who can survive to the 
next generation is decided by fitness. Crossover, Mutation, 
Tournament Selection and Elite Preservation are used as the 
genetic operators of GNP. The outline of evolution is described as 
follows: 
1. Generate initial population and calculate the fitness of initial 

population; 
2. Execute tournament selection, genetic operations to 

individuals and generate new individuals for the next 
generation; 

3. Calculate the fitness of the new individuals; 
4. Repeat 2-3 until the terminal condition meets. 

5. APPLICATION OF GNP TO EGSCS 

Double-Deck Elevator Systems with Destination Floor 
Guidance Systems are so complex in that the assignment of the 
optimal cage to each new hall call is fairly difficult due to the 
enormous amount of information obtained. GNP is expected to be 
appropriate for the assignment problem in elevator systems. The 
reason is that: GNP can realize a rule based Elevator Group 
Supervisory Control System (EGSCS) due to its directed graph 
structure with judgment nodes and processing nodes, which makes 
EGSCS more flexible in different traffics. And also, EGSCS can 
be generated by an evolutionary method with mutation, crossover 
and selection, which could develop new efficient and effective 
rules that elevator experts can not imagine as well as saving the 
time for designing EGSCS. 

The structure of Double-Deck Elevator System (DDES) with 
Destination Floor Guidance System (DFGS) using GNP is shown 
in Fig.5. The Elevator Group Supervisory Control System 
(EGSCS) includes Elevator System and GNP controller. When a 
hall call occurs, System Information and Cage Information are 
collected. Then the GNP Controller uses these data, and does 
some calculation and evaluation. The GNP Controller consists of 
the System Information Judgment Part, Cage Selection Part, Cage 
Judgment Part and Hall Call Assignment Part. The information is 
transferred through those parts. 
5.1 Evaluation Items 

In our proposed method, the following 12 evaluation items are 
defined and employed to construct GNP considering the features 
of DDES with DFGS. 
ATsd : Predicted arrival time of the assigned hall call to the self 

cage including the incremental arriving time of the already 
registered hall calls to the self cage 

AETsd: Maximum of the arrival time plus elapsed time since the 
assignment of the hall calls to the self cage 

NPsd : Number of passengers in the self cage 

NCsd: Number of assigned hall calls to the self cage 

RRsd : Predicted riding rate ( passenger number/ cage capacity) of 
the self cage when the self cage arrives at the assigned hall 
call including the incremented riding rate of already 
registered hall calls to the self cage 

CHCsd: Check whether the emerged hall call coincides with the 
car calls of the self cage 

ATd : Sum of the incremental predicted arrival time of the already 
assigned hall calls to the other cage 

AETd: Maximum of the arrival time plus elapsed time since the 
assignment of the hall calls to the other cage 

DNPd: Difference of the number of passengers between the self 
and other cage 

DNCd: Difference of the number of assigned hall calls between 
the self and other cage 

CCSd : Check the coincident service 

CSRd : Check the separate riding for identical destination 
5.2 Assigning Algorithm(7)(8)

In the GNP controller part, firstly, the information on the 
elevator system is transferred to the system information judgment 
part. There, the degree of variance of the elevator position, the 
floor and direction of the new hall call and the destination floor of 
the new hall call are judged by the system information judgment 
nodes. An activated node in the system information judgment part 
is transferred to an appropriate node in the cage selection part. In 
other words, the best initial node in the cage selection part is 
determined by studying the elevator positions and the information 
on the emerged and destination floors of a new hall call. 

Secondly, a candidate cage with the minimum value of the 
evaluation function is selected in the cage selection part. The 
evaluation function might include some of the 12 items, which are 
mentioned before (ATsd, AETsd, NPsd, NCsd, RRsd, CHCsd, ATd, AETd, 
DNPd, DNCd, CCSd, CSRd). The candidate cage should be the self 
cage, not the other cage, because we suppose that a new hall call is 
assigned to the best cage in the self cages. The self cage could be 
the upper cage or the lower cage. In the cage selection part, we 
have only processing nodes and each of these continues to 
calculate one of the 12 items of all self cages by node transition 
until an activated node in the cage selection part moves to the 
node in the cage judgment part. Different from the conventional 
methods, the number and combination of the items for the 
evaluation function are decided by evolution. In other words, the 
connection from the current processing node to the next node, 
which might be another node in the cage selection part or the node 
of the cage judgment part, is determined by evolution of GNP. 
Meanwhile, each item in the evaluation function has a weight 
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adjusted by GA. The cage evaluation function e(i) of cage i is 
calculated by Eq.(5). Now we suppose that item X for cages is 
evaluated at the cage selection node p∈P 

∑
∈

⋅=
Pp

pp ixwie )()(                                 (5) 

The normalized value xp(i) of the evaluation item X of cage i at 
the cage selection node p is calculated by Eq. (6) 
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p
p X
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where, 
P : Set of suffixes of nodes transited in the cage selection part 

wp: Weighting parameter of cage selection node p 

Xp(i): Value of evaluation item X of cage i at the cage selection 
node p 

xp(i): Normalized value of evaluation item X of cage i at the cage 
selection node p 

XAveMax: Maximum value of averaged evaluation item X over past 
5 minutes among cages 

As for the evaluation item {CHCsd, CCSd }, xp(i)=0 if the 
condition is satisfied, and xp(i)=1 if not satisfied. As for the 
evaluation item {CSRd }, it is vice versa. Finally, we calculate the 
cage evaluation function of each cage and choose the optimal cage 
d as a candidate cage by Eq(7) 

)(minarg ied
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= ,                                   (7) 

where, 
I: set of cage IDs 

Then, the selected candidate cage d is evaluated again by 
individual evaluation items each by each in the cage judgment part 
in order to study if the candidate cage would be a really 
satisfactory one in point of each evaluation item. In concrete, the 
binary judgment like Eq. (8) is carried out except {CHCsd, CCSd, 
CSRd } in cage judgment nodes j. 
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J : Set of suffixes of nodes in the cage judgment part 

rj
Y : Parameter of evaluation item Y at cage judgment node 

Yj(d):Value of evaluation item Y of cage d at cage judgment node j 

YAveMax : Maximum value of averaged evaluation item Y over past 5 
minutes among cages 

As for {CHCsd, CCSd, CSRd }, the binary judgment (satisfy/not) 
is done. If the candidate cage d satisfies Eq(8), then the new hall 
call is assigned to the best cage d in the hall call assignment part. 
Otherwise, the node transition is resumed from the cage selection 
part in order to select another candidate cage. 

After the hall call assignment to the best cage completes, GNP 
stops transitions until another new hall call occurs and the 
transition begins at the node in the System Information Part, 
which is connected from the node in the Hall Call Assignment 

Part. 
It should be noted that all the connections in the nodes in four 

parts of GNP mentioned above could be changed by evolution. 
5.3 Node Functions 

There are 4 kinds of nodes in the parts of the algorithm 
described in the previous sub-section. They are as follows. 
< System Information Judgment Node > 

JVPsd : Judge the degree of variance of the elevator position 

JEFsd : Judge the floor and direction of the new hall call 

JDFsd : Judge the destination floor of the new hall call 

< Cage Selection Node > 

S(X) : select evaluation item X from 12 items by the node 
transition in the cage selection part and calculate Eq. (7) 

X∈{ATsd, AETsd, NPsd, NCsd, RRsd, ATd, AETd, DNPd, DNCd, 

CCSd, CSRd} 

< Cage Judgment Node > 

JZ : Judge whether yj(d)≤rj
Y is satisfied or not 

Y∈{ ATsd, AETsd, NPsd, NCsd, RRsd, CHCsd, ATd, AETd, DNPd, 

DNCd } 

JZ (d): Judge whether Z of cage d is satisfied or not 

Z∈{ CHCsd, CCSd, CSRd} 

<Hall Assignment Node> 

A(d) : Assign the new hall call to cage d 

5.4 Fitness Function 
The fitness function of GNP individual is calculated by a 

weighed sum of waiting time, maximum waiting time, one cage 
service and loops of GNP as follows. 

222
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N : Total number of passengers 

tn : Waiting time of n-th passenger 

tmax: Maximum waiting time among N passengers 

nc: Total number of passengers experiencing one cage service 

l : Number of loops of GNP per an hour evaluation 

6. SIMULATIONS 

6.1 Simulation Conditions 
In this paper, we study how the passengers’ arrival distribution 

affects EGSCS using GNP in a typical office building, having 16 
floors and 6 double-deck elevators running at 2.5m/s. Table 1 
shows the specifications of the system simulator. Simulations are 
executed under 5 kinds of random sequences considering the 
probabilistic feature of DDES. 

As shown in Table 2, simulations are implemented for the three 
kinds of traffic flow, "Regular Time", "Up-peak Time" and 
"Down-peak Time". The row of the Table represents the floor 
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Table 1. Specifications of Elevator Simulator. 
Items Value
Number of Floors 16
Number of Shafts (Cage) 6(12)
Floor Distance [m] 4.5
Max. Velocity [m/s] 2.5
Max. Acceleration [m/s2] 0.7
Jerk [m/s3] 0.7
Cage Capacity [person] 20
Time for Opening Door [s] 2.0
Time for Closing Door [s] 2.3
Time for Riding [person/h] 1.0
Passenger Density [person/h] 
   Regular Time 2400
   Up-peak Time 2700
   Down-peak Time 3300
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Table 4. Performance of the proposed method.  
(unit: second) 

ormance of different k of Erlang arrival without Batch 
Regular Up-peak Down-peak 

AWT ATT AWT ATT AWT ATT 
27.67 59.30 30.06 60.24 27.80 60.31
26.86 58.16 27.98 58.52 25.29 59.27
26.32 57.02 26.88 59.28 24.30 57.08

 
rformance of different k of Erlang arrival with Batch. 

Regular Up-peak Down-peak 
AWT ATT AWT ATT AWT ATT 
31.47 60.39 34.20 89.86 34.07 61.44
29.51 58.90 33.44 90.89 31.11 60.78
27.92 58.42 32.33 88.18 30.03 59.71
Table 5. AWT of different k of Erlang arrival in Training and 
Testing. 

(unit: second) 
(a) Regular Time 

 Testing 
Training  

k=1 k=10 k=50 

k=1 27.76 27.89 28.01 
k=10 27.94 26.86 27.53 
k=50 27.85 27.02 26.32 

(b) Up-peak Time 
 Testing 
Training  

k=1 k=10 k=50 

k=1 30.06 30.10 28.69 
k=10 28.02 27.98 27.85 
k=50 30.11 28.02 26.88 

(c) Down-peak Time 
 Testing 
Training  

k=1 k=10 k=50 

k=1 27.80 27.79 26.97 
k=10 27.89 25.29 25.30 
k=50 27.93 25.29 24.30 
t floors by batch. Here, we set the parameters of 
distribution as n=50, p=0.06. It means the mean of the 
n is n x p=3. It indicates 3 passengers on average might 
 the same time. Fig.7 shows the fitness curves of each 
ng Erlang distribution in the batch mode. The batch 
 make the system more complex, so we could see the 
igher than the cases without batch, but it is still under 
ce of the parameter of Erlang distribution. 
ess values of down-peak traffic are lower than those in 
nd regular traffic because down-peak traffic has more 
 flows of traffic than up-peak time, and also it is simpler, 

y one direction, than regular traffic. 
rformance of AWT(average waiting time) and ATT 
raveling time) are shown in Table 4 ((a) Performances 
atch. (b) Performances with batch.). It is shown from 
t most of the values are decreased except for Up-peak if 

 k increases. 
at the results in "Up-peak Time" are a bit different. The 
sing those results are due to the inherent properties in 
me, where most of passengers emerge at the base floor 
higher floors (14). So the performance in this pattern is 
ced by the parameter of Erlang distribution so much. 
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Fig. 6. Fitness Curves using Erlang distribution without Batch 
 

Down Peak Time k=1  
Down Peak Time k=10
Down Peak Time k=50

(c) Down-peak Time 
Fig. 7. Fitness Curves using Erlang distribution with Batch. 
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Fig.6, Fig.7 and Table 4 were obtained using the same value of 
parameter k when training and testing, while Table 5 shows the 
average waiting time when different k is used in training and 
testing. It is found from Table 5 that testing results with k being 1, 
10, 50 do not have so much differences when trained using k=1, 
on the other hand, testing results have much differences when 
k=50 is used in training, i.e., the larger k is, the smaller AWT is. 

7. CONCLUSIONS 

In this paper, studying the effects of passengers’ arrival 
distribution to elevator group supervisory control systems using 
GNP has been shown. It has been clarified from the simulations of 
using Erlang and Binominal distribution for passengers’ arrival 
that Erlang arrival and Batch arrival have great influences on 
average waiting time and average traveling time in terms of 
increasing these values. 
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