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A Precise Point Positioning Filtering Method  

for Navigation and Orbit Determination of Low Earth Orbiters 

Takahiro YOSHIOKA** and Masaaki MURATA*  

A new precise point positioning (PPP) technique for on-orbit navigation (NAV) and precision orbit determination (POD) of 

LEO satellites is proposed. A dual-frequency PPP filter is developed by assuming simple white noise processes for both position 

deviation (from the pre-determined reference orbit) and receiver clock. The filter performance is assessed by processing one-day 

GPS data collected with a dual-frequency receiver onboard the LEO satellite CHAMP. The results show that dual-frequency 

PPP in space is capable of producing NAV solution with 3D positional accuracy of about one meter, and POD solution of about 

0.6 meters, both in 95 percentile. 
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1. Introduction 

A new technique called Precise Point Positioning (PPP) 

has been attracting precision geo-science and navigation 

community, as it would have a potential of providing highly 

accurate point positioning with only a single GPS receiver. 

The PPP accuracy, which is almost comparable to that of 

kinematic GPS (KGPS), has been reported for terrestrial 

and aerial navigation users
1)~3)

. Such a PPP technique 

became possible with the availability of precise orbits and 

clock correction information for the GPS satellites, which 

the International GNSS Service (IGS) has begun generating 

and disseminating since 1994 as an international civil 

cooperation. Compared to DGPS techniques
4)

, PPP has the 

obvious advantages of simplified system design, 

operational flexibility (i.e., no specific operational 

restrictions), and cost reduction. PPP could therefore be a 

vital alternative to the conventional carrier phase DGPS. 

For space PPP, a number of studies on LEO precision 

orbit determination (POD) in post-mission mode have been 

carried out
5)~8)

, but very few studies have focused on real-

time on-orbit navigation application (NAV) for LEO 

satellites. In this paper we propose a simple and efficient 

approach to LEO NAV as well as LEO POD, which relies 

solely on raw un-differenced pseudorange and carrier phase 

data. Therefore it differs from the previous investigations 

(primarily dedicated to LEO POD) in the algorithm: for 

example, Bock et al.
6)

 used un-differenced pseudorange and 

epoch-by-epoch carrier phase difference data, and also 

Bisnath et al.
7)

 used double-differenced pseudorange and 

triple-differenced carrier phase data. 

 In 2006 and 2007, we developed a basic PPP software at 

National Defense Academy (NDA) for terrestrial and aerial 

vehicular navigation applications and assessed its 

performance indicating the horizontal accuracy at a few 

centimeters for static antennas and at better than a few 

decimeters for moving antennas
9)~10)

. This PPP software 

was intensively modified for space navigation users and 

evaluated by applying to the 24-hour dataset collected on 

CHAMP, German LEO satellite. This paper gives design 

philosophy of a dual-frequency PPP filter and analysis 

results of positioning performance for both NAV and POD. 

 

2. PPP Filter Design 

Implicitly assumed is that the onboard receiver is dual-

frequency so that ionospheric-free pseudorange and carrier 

phase data are constructed. In that case the observation 

equations are described in the form of the linear 

combinations for each satellite: 
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where iP  is the measured pseudorange on carrier 

wave iL (i=1,2); iC  is the measured carrier phase on 

iL ;  is the true geometric range; c  is the speed of light; 

dt  is the receiver clock bias; 
r  is the relativistic effect 

on receiver clock; SVdt  is the transmitter clock bias;
r

SV  is 

the relativistic effect on transmitter clock; if  is the 

frequency of iL ; iN  is the integer phase ambiguity on 

iL  ; N
~

is the floating ambiguity; and i  represents the 

residual measurement error including random noise. The 

measurement error is assumed to be normally distributed 

with mean zero and elevation-dependent standard deviation 

(SD) of  
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where  k,0  is a nominal SD along the zenith direction, el  

is the elevation angle above local horizon, and ka  is a 

tuning parameter of constant (set zero throughout this 

study). Navigation users can use the precise orbits and 

clocks produced by IGS. Currently the IGS's official 

products for precise orbits and clocks are in three 

categories: UltraRapid, Rapid, and Final. Among these 

products, only the UltraRapid orbit and clock can be used in 

real-time. In this paper, however, we used the Final product 

of the 15-minute precise orbits and 30-second clock 

corrections, which were computed at the CODE (Center for 

Orbit Determination in Europe), one of the IGS analysis 

centers. When necessary they were interpolated using 

Lagrange's polynomial, that is, the 9th order polynomial for 

orbits and the 2nd order polynomial for clock corrections. 

Also, the correction for the center-of-mass offset to the 

transmitting antenna was applied (Fig.1).  

The unknown parameters in the PPP filter nominally 

consist of the position components ( r


) of the receiver 

antenna, a receiver clock bias ( b ), and ionospheric-free 

(non-integer) ambiguities ( N

~

, max.12) of the un-

differenced carrier phase data. The position components 

( r


) are the positional deviation from a pre-determined 

reference trajectory of the LEO satellite. The float 

ambiguities are modeled as a piece-wise constant corrupted 

with white noises. All unknowns except for the float 

ambiguities are modeled as Gaussian white noise processes 

with mean zero and specified variances. The clock model 

like this is often called a white noise clock. The white noise 

models are the simplest mathematically and so with less 

demanding for computation. Note that there is no rationale 

for Gaussianity with zero mean, and that it is only an 

assumption made for technical convenience. The other 

models, such as random walk, first-order Markov model, 

etc., could of course be used but the improvement in 

positional performance will be marginal. 

The state equations are thus described in a simple linear 

discrete form as follows:  

),0(~, 33,,1   IqNwwr rjrjrj


                              (5) 

),0(~, ,,1 bjbjbj qNwwb                                        (6) 

),0(~,
~~

1212~
,

~
,

~1   IqNwwNN
NjNjNjj


               (7) 

where nnI   denotes an n×n unit matrix. The magnitude of 

covariance matrices br qq , and 
N

q ~  for the white noises 

br ww ,


 and
N

w~


is tuning parameters. Hereafter, 

),(~ PmNx


means that x


 is normally distributed with 

mean m


 and covariance matrix P . As the means of 

constructing the PPP filter, we chose the conventional 

Extended Kalman Filter (EKF)
11)~12)

 and the Unscented 

Kalman Filter (UKF)
13)

 , an alternative to the EKF. 

 

3. Analysis Results 

3.1 LEO Data 

The CHAMP (CHAllenging Mini-satellite Payload for 

geophysical research and application) is a German LEO 

satellite designed for geo-science and atmospheric research 

and managed by the GeoForschungs Zentrum (GFZ). Its 

main scientific mission goals are to provide highly precise 

gravity field, magnetic field, radio occultation 

measurements, and GPS altimetry over a 5-year period. 

Fig.1 shows the satellite configuration with the location of 

the GPS receiver antennae for POD (and NAV). One-day 

dataset collected on November 18, 2006, were focused in 

the present paper. The data included dual-frequency 

pseudorange and carrier phase taken by a "BlackJack" 12-

channel receiver. They were unedited with the sampling 

interval of 10 seconds. While the cataloged values of raw, 

un-differenced data precision are 10-20 cm in pseudorange 

and 0.05 cm in carrier phase, we assigned the values of 50 

cm and 1 cm, respectively, as the nominal observation error 

standard deviation (see Eq.(4)) for the ionosphere-free 

combination in the zenith direction, by taking into account 



 

169 

 

 

the effect of the remaining residual errors. It should be 

noted that no attitude information was available for this 

research. At that time the CHAMP orbited at an altitude of 

350 km, with a period of about 90 minutes, an eccentricity 

of smaller than 0.001, and an inclination of 89 degrees. The 

corresponding satellite visibility is plotted in Fig.2. The 

upper (thick) skyline shows the maximum number of GPS 

satellites all-in-view from CHAMP’s receiver, indicating 

that approximately 8.2 satellites on average were observed 

at an epoch. The lower (thin) line shows the number of GPS 
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Center of Gravity
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Fig. 1 CHAMP configuration (GFZ Web) 

 

 

Fig.2 Satellite visibility 

 

satellites with the elevation angle of less than 10 degrees, 

approximately 0.7 satellites on average. 

 

3.2 Reference Orbit Generation 

Satellite missions for LEO require real-time or post-flight 

orbit determination (OD). As usual, post-flight OD is 

performed by the use of large-scale orbit determination 

program. On the other hand, the proposed PPP filter is 

executed assuming a reference orbit with moderate 

accuracy. For the case that any reference orbit is not 

available in advance, we have proposed
14)

 to generate it 

using a classical least-squares in which the observation data 

are an epoch-to-epoch sequence of the single point 

positioning solution, i.e. the 3D position coordinates in the 

conventional terrestrial system (CTS) or equivalently in the 

Earth-centered, Earth-fixed frame (ECEF). Here the 

coordinate solution is derived by using the pseudorange 

data only. We call this set of the temporal coordinate 

solution as the pseudo-observations. Satellite dynamics for 

the batch filter is expressed in the J2000 inertial system as 

),,,(
3

pRRtf
R

R
R





                                    (8) 

where t   is the Terrestrial Time (TT), μis the gravitational 

parameter of the Earth, p


is the unknown constant 

parameter vector to be estimated, and f


 denotes the 

perturbation acceleration vector. For the Earth gravity 

computation the NASA's Earth Gravitational Model 1996 

(EGM96), truncated up to degree and order 36, was adopted 

in this research. For the atmospheric density, we can use 

either exponentially decaying model or the Jacchia-Roberts 

1971 model with tabular data consisting of 7.10F  solar flux 

and 3-hourly planetary geomagnetic index PK . The Earth 

orientation parameters (EOP) are required as well. The 

other forces acting on the satellites, such as solid Earth tide, 

ocean tide, and earth radiation pressure and relativistic 

effects, are marginal for a relatively short arc of LEO 

satellites and hence are not taken into account. 

The observation equation is thus described as 

ktruekobsk rr 


 ,,                                   (9) 

where ,...)2,1(),0(~ kRN kk 　　


. The single point 

positioning solution vector obskr ,


 is calculated in the ECEF 

frame. The 3×3 positioning error covariance matrix kR  

varies with satellite geometry,  but  we assume they are a 

diagonal 33

2

IP  where P = 1 m is adopted.  

In summary, a reference orbit can be calculated by 

applying the following two-step procedures: first, 1) single 

point positioning solution (3D coordinates) at each epoch is 

obtained by the conventional least-squares in which precise 

orbits and clock corrections are used; and secondly, 2) the 

orbit is dynamically fitted to the 3D coordinates used as the 

pseudo-observations.  

The above OD scenario was evaluated with varying 

dynamic models based on the 24-hour CHAMP data, and 

the resulting orbit accuracy was investigated by the direct 

difference from the GFZ precise ephemeris. As an example, 
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Fig.3 shows the time history of the orbit difference between 

the generated reference orbit (no drag included) and the 

truth (i.e. GFZ's precise orbit). The orbit difference from 

the truth is expressed in the local radial-transverse-normal 

(RTN) frame (see Appendix A). The error in the transverse 

direction is the biggest, being the maximum error of about 

600 m towards the initial and final epochs. Obviously, this 

is due to the lack of atmospheric drag force model in the 

OD process. This orbit was used in this research as the 

reference orbit for the PPP filter.  

 

 

Fig.3 Position difference between the reference orbit and 

GFZ precise orbit 

 

3.3 PPP Results 

The 24 hours of observation data were processed by the 

EKF and the UKF, assuming a nominal model setup and 

with the mask angle of 10 degrees. The time update portion 

of the EKF takes the form as follows:  

jjj xx ˆ
1 

                                                     (10) 

QPP T
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In Eqs. (10) and (11) (and also in Appendix B), the upper 

bar and hat denote the a priori and a posteriori estimate 

respectively, and the transition matrix j  is the identity 

matrix, except for the position and clock bias portions that 

are zero for the above baseline white noise model. The 

process noise intensity matrix Q can be set up either 

empirically or through intensive parameter tuning on the 

basis of running simulation program of the PPP filter. The 

selected values are  

610 br qq m
2
/s and

10
~ 10
N

q  m
2
/s for Q, and 

L 3,2,1  for UKF, where L denotes the 

dimension of the filter state (see Appendix B for details) . 

The kinematic CHAMP orbit solution is very sensitive to 

data editing schemes applied, and therefore online data 

screening is a prerequisite for the NAV and POD filters. 

The editing strategies implemented in this paper are shown 

in Table 1. The Melbourne-Wuebbenna (M-W) linear 

combination is defined as wide-lane carrier phase minus 

narrow-lane pseudorange, i.e. 
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and this eliminates the effect of the ionosphere, the 

geometry, the clocks and the troposphere. Thus, this 

combination can be used to detect cycle slips in the un-

differenced carrier phase data. These editing strategies are 

able to screen the data in the observation domain, with no 

need of post-fit residual analysis. Strictly speaking, models 

for precise orbits and precise clocks have to be consistent  

 

Table 1 Edit criteria for NAV and POD pre-processing 

Criterion Content 

Satellite status
*
 Satellite health, and SV accuracy 

(from navigation message)
**

 

Cutoff angle
*
 Reject data with elevation angle less 

than 10° 

Radio signal 

strength
*
 

Reject data with SNR < 6 (RINEX 

standard) 

Erroneous 

Pseudorange
*
 

Reject unless PRmin  < PR < PRmax 

Residuals
*
 Reject if the moving average of the 

residuals weighted with the 

reciprocal of the estimation error 

covariance is larger than the 

specified level. 

Cycle slip
*
 Reset the filter if the time difference 

of Melboune-Wuebbena linear 

combination is larger than the 

specified tolerance. 

Isolated epoch of 

data 

Removed by hand (only for POD 

data). 

     

* Applied for both NAV and POD data. 
** PRN15, decommisioned on 17 Nov. 2006 
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each other, and it was satisfied in this paper by the use of 

15-minute orbits and 30-second clocks both computed by 

the CODE. Positioning errors between the EKF navigation 

solution and the truth, i.e. precise dynamic orbit of the 

GeoForschungsZentrum (GFZ), both expressed in the local 

radial-transverse-normal (RTN) frame, were computed in 

which the center-of-mass offset correction against receiver's 

phase center was applied by assuming that the spacecraft  

attitude is nominally aligned along the RTN directions.     

 

 

(a) dR 

 

(b) dT 

 

(c) dN 

 

(d) 3D rss 

Fig. 4 NAV-EKF positioning errors 

 

Table 2 Positional error of NAV-EKF (Unit:m) 

parameter dR DT dN 3D rss 

median 

95% 

0.15  

0.87 

0.13 

0.73 

0.14 

0.40 

0.31 

1.13 

 

Table 3 Positional error of NAV-UKF (Unit:m) 

parameter dR DT dN 3D rss 

median 

95% 

0.15  

0.75 

0.12 

0.76 

0.14 

0.38 

0.30 

1.07 

 

Fig. 5 Histogram of 3D rss positioning errors 

 

For the purpose of saving paper space, only the plots of the 

NAV-EKF results are shown in Fig.4. Fig.4 (a)-(c) plot the 

positioning errors, i.e. dR, dT, and dN at each of the RTN 

directions, and Fig.4 (d) shows the 3-dimensional root-sum-

squares (3D rss). At first it should be noticed that, opposite 

to very slow convergence found for the terrestrial or aerial 

PPP navigation
9)~10)

, the space PPP filter is converging 

much faster, within several number of observation epochs. 

This is most likely due to satellite's orbital motion causing 

rapid change in the measurement geometry. Second, there 

are many spikes in all plots, some exceeding hundred 

meters, and they are mostly due to the frequent filter re- 

initialization when a new satellite is coming up or a cycle 

slip occurs. In particular, the procedure when a cycleslip 

has occurred goes as follows: calculate first the prediction 

of the new ambiguity (with use of the M-W linear 

combination); and replace the corresponding filter state 

component with the predicted value and at the same time 

initialize the corresponding component of the covariance 

matrix; and then incorporate that carrier phase data into the 

filter. 

Third, the POD result does not change so much from the 

NAV one, but with rather less spikes because of additional 

hand editing of separated data and short passes. Fig.5 

shows the histogram of positioning errors for NAV case.  

Table 2 and 3 tabulate the median and the 95-percentile 

point of positional errors in each direction. For NAV 

solution, positioning accuracy of less than one meter in 

both radial and transverse components and of less than one- 
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half meters in the normal component, with 3D  accuracy of 

about one meter, can be achieved (all in the sense of 95 

percentile). The NAV solution is not biased so much, at  the  

level  of  smaller than a  decimeter. For POD, positioning 

accuracy of about one-half meters in all components, with  

3D accuracy of about 0.6 meters, can be achieved (in 95 

percentile). As seen from Table 3, the UKF provides 

slightly better positioning results than the EKF, but by 

paying the extra computational cost. Indeed, it is well 

recognized that the UKF in its standard form takes much 

more computational burden than the conventional EKF.  

Fig.6, a microscopic view of Fig.4 focused over the short 

period (18 min.) of high quality estimation, shows that the 

position errors in each direction are more or less oscillating 

in a saw-shape manner with a period of about 150 s and 

with a peak-to-peak range of 20 cm for dR, some cm for dT 

and dN. The oscillatory variation in the radial direction 

suggests pitching motion around the center of mass of the 

spacecraft, although the cause of 150 s periodicity is not 

identified. The result evidences superior accuracy of the 

PPP filters. Fig.7 compares convergence property of two 

filters before and after reset over a period of data gap. 

Before reset, both filters are in a steady-state with almost 

equal position errors. Immediately after reset, position 

errors increase abruptly but decrease gradually as 

measurements are processed. Clearly, the UKF is more 

 

 

Fig.6 Microscopic view of positional errors 

 

 
Fig.7 Convergence feature before and after reset 

 

accurate and faster in convergence than the EKF. This is 

because of the second order accuracy of the UKF 

unconditionally.  

 

4. Conclusions 

A design methodology of a PPP filter for LEO navigation 

and orbit determination is proposed and its performance is 

evaluated in post-mission mode using 24 hours of GPS 

tracking data collected onboard CHAMP.  The potentiality 

and effectiveness of the PPP filtering approach are 

demonstrated: the 3D rss positioning accuracy (95 

percentile) of about one meter for NAV and of about 0.6 

meters for POD can be achieved. The filter generally shows 

fast convergence due primarily to rapid change of the 

geometry. However, data editing scheme applied online for 

NAV or offline for POD extremely affects the positioning 

performance and should be paid special efforts in its 

implementation. 
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Appendix A: RTN Frame 

Given the position and velocity vectors R


 and V


of the 

satellite at an epoch in a reference Cartesian coordinate 

system, we can compute the orthogonal unit vectors as 

follows: 

RNT
VR

VR
N

R

R
R ˆˆˆ,

||
ˆ,

||
ˆ 




 　　　 







               (A1) 

Here, TR ˆ,ˆ and N̂ are aligned with the radial, transverse 

(along-track), and normal (cross-track) directions, 

respectively. This set of three triads defines the right-

handed rotating coordinate system called the radial-

transverse-normal (RTN) frame (Fig.8). The coordinate 

transformation matrix from the reference frame to the RTN 

frame is given by 

 TRTN
REF NTRC ˆˆˆ                                       (A2) 

which is used to convert the position errors in the reference 

Cartesian frame into those in the RTN frame.  

 

Fig. 8  RTN frame 

 

Appendix B: UKF Algorithm 

Given discrete-time nonlinear state and observation 

equations 

kkkk wuXFX  ),(1                                     (B1) 

kkk XGY  )(                                                  (B2) 

where ku is a known input, ),0(~ QNwk  and 

),0(~ RNk , the UKF algorithm can be written in the 

following pseudo-code form
13)

. 
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 00
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Time update: 
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 1/1/   kkkk GY                                                      (B9) 
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Measurement update: 
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where   L , LL  )(2  is a scaling 

parameter, L dimension of the state, Q process noise 

covariance, R measurement noise covariance, and 

iW weights given by 

  LiLWW
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       (B16) 

The constants   ,,  are adjustable scaling parameters 

and their values are usually set in the following way: 

110 4   , 0  or L3 , and 2 (optimal for 

Gaussian distributions). 

 

Received the B.E. degree from 

the Tohoku University in 2005, 

and the M.E. degree from NDA in 

2010. He has been with the Japan 

Grand Self-Defense Force since 

March 2005. His field of interest 

is applied estimation and GPS 

navigation. 

Received the B.E. and M.E. degrees 

from Kyoto University in 1967 and 

1969, respectively, and the Ph.D. degree 

in aero-space engineering from the 

University of Texas at Austin in 1982. 

In 1969, he joined the National 

Aerospace Laboratory (now JAXA) and 

worked on satellite geodesy and GPS 

applications. From April 2003 to March 

2010, he was Professor of Aerospace 

Engineering at the National Defense 

Academy (NDA). Currently, he is 

Technical Adviser at GNSS 

Technologies, Inc. He is a member of 

the Geodetic Society of Japan and the 

American Astronautical Society. 

Takahiro YOSHIOKA  

Masaaki MURATA (Member) 


